首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The c-C6H12/c-C6D12 kinetic isotope effect (KIE), the k6/k5 rate constant ratio (c-C6H12/c-C5H10), and the temperature dependence of these ratios in the gas-phase reactions of cycloalkanes with peroxynitrous acid and OH radicals are identical. The same result was obtained for the reactions in aqueous solution. These data are in accord with the conclusion that OH· radicals formed in the homolysis of the HO-ONO bond are the active species in the reactions of HOONO with hydrocarbons in aqueous solution and in the gas phase. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 2, pp. 105–110, March–April, 2008.  相似文献   

3.
N2O was photolyzed at 2139 Å to produce O(1D) atoms in the presence of H2O and CO. The O(1D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative importance of the various possible O(1D )–H2O reactions is The relative rate constant for O(1D) removal by H2O compared to that by N2O is 2.1, in good agreement with that found earlier in our laboratory. In the presence Of C3H6, the OH can be removed by reaction with either CO or C3H6: From the CO2 yield, k3/k2 = 75,0 at 100°C and 55.0 at 200°C to within ± 10%. When these values are combined with the value of k2 = 7.0 × 10?13exp (–1100/RT) cm3/sec, k3 = 1.36 × 10?11 exp (–100/RT) cm3/sec. At 25°C, k3 extrapolates to 1.1 × 10?11 cm3/sec.  相似文献   

4.
The kinetic isotope effect for the abstraction of hydrogen/deuterium from dimethylnitramine and dimethylnitramine-d6 by chlorine atoms has been studied in the temperature range 273–353 K. The rate constant ratio kH0/kD is given by the Arrhenius expression, kH/kD=(0.92 ± 0.07)exp(286 ± 250/RT), where R is expressed in cal mol?1 K?1. The absolute rate constant for the deuterium abstraction reaction is extrapolated as kD=(1.50 ± 0.90) × 10?10 exp(?1,486 ± 370/RT) cm3 molecule?1 s?1. The temperature dependence of the kinetic isotope effect was calculated using the conventional transition-state theory, and the obtained values for kH/kD and ΔEH, D are in good agreement with the experimental value for a bent transition state geometry, with two new vibrational frequencies of 340 cm?1 (272 cm?1) corresponding to the in-plane and out-of-plane motions of hydrogen (deuterium) atoms in the Cl…H…C arrangement. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The velocity of the hydrogen ion catalysed hydrolysis of p-nitrophenyl-diazo-methane (I) has been measured in H2O? D2O mixtures, giving an isotopic αi = 0.49. The product isotope effect r = 5.1, determined from product analyses, combined with the (overall) solvent isotope effect kH/kD = 2.81, yields the primary kinetic isotope effect (kH/kD)I = 3.8, and the secondary kinetic isotope effect (kH/kD)II = 0.75. The CICH2COOH-catalysed hydrolysis of I in H2O? D2O mixtures gave a straight-line plot of kn/kH versus the atomic fraction n of deuterium. With four carboxylic acids, as catalysts, values of about 4.3 for the kinetic (overall) isotope effects were observed.  相似文献   

6.
The photodissociation spectra of the molecular ions of some cycloalkanes are compared with those of the corresponding acyclic alkanes and alkenes. It is shown that the molecular ions of cyclohexane and cycloheptane are cyclic whereas the cyclopentane ring opens upon ionisation. This conclusion is supported by a study of the charge-transfer equilibria: C6D12± + C6H12 ? C6D12 + C6H12±, C5D10± + C5H10 ? C5D10 + C5H10±. It is furthermore shown that the maxima in the photodissociation spectra of the molecular ions of saturated hydrocarbons correspond to different dissociation processes.  相似文献   

7.
The overall rate constants for H-abstraction (kH) from tetrahydrofuran and D-abstraction (kD) from fully deuterated tetrahydrofuran by chlorine atoms in the temperature range of 298-547 K were determined. In both cases, very weak negative temperature dependences of the overall rate constants were observed, described by the expressions: kH = (1.55 ± 0.13) × 10−10 exp(52 ± 28/T) cm3 molecule−1 s−1 and kD = (1.27 ± 0.25) × 10−10exp(55 ± 62/T) cm3 molecule−1 s−1. The experimental results show that the value of the kinetic isotope effect (kH/kD), amounting to 1.21 ± 0.10, is temperature independent at 298-547 K.  相似文献   

8.
The hydroxylation of geraniol ( 8 ) by cytochrome P-450 (P-450Cath.) from the subtropical plant Catharanthus roseus (L.) G. DON was optimised to give 8-hydroxygeraniol ( 9 ) as the single product in 35% yield. Incubations of different 13C- and 2H-labelled geraniols revealed that H-abstraction is completely regioselective in favour of the CH3 group trans to the chain at C(6) of 8 . An intramolecular isotope effect kH/kD = 8.0 was determined, suggesting that H-abstraction is one of the major rate-contributing steps; however, the intermolecular isotope effect was surprisingly inverse at low conversion kH/kD = 0.50, indicating the existence of rate-contributing steps preceding the first irreversible, isotope-sensitive reaction in the sequence.  相似文献   

9.
Gas phase slow combustion of (chloro)benzene in O2/N2 mixtures, and induced by addends such as tert butylhydroperoxide, cyclohexane, or methanol, leads to (chloro)-phenol as the only important aromatic product. Using C6H6/C6D6 mixtures, formation of phenol/perdeuterophenol was studied between 520–1080 K. The temperature dependence of this product ratio was found to obey the Arrhenius expression for the intermolecular isotope effect log kH/kD = ?0.14 ± 0.03 + (1240 ± 80)/2.303RT (R in cal/mol K). Essentially the same result was obtained for the intramolecular isotope effect, measuring the change in isomer distribution for the chlorophenols formed from p-deuterio-chlorobenzene versus those for chlorobenzene. These results are in accordance with H(D)-abstraction by ·OH, via a linear transition state, as the first and (relative) rate determining step. Whereas above 1000 K, at reduced pressure, the intramolecular isotope effect continues to prevail, C6H6/C6D6 do not show differences in rate of formation of C6H5OH/C6D5OH. Under these conditions, the only effective reaction of arene to phenol appears to be set in by addition of O(3P).  相似文献   

10.
The discharge-flow method with resonance fluorescence detection of OH radicals was applied to obtain the rate constant value of k D = 1.95 ± 0.14 (1σ) 1010 cm3 mol-1s-1 at 298 K. Combination with k H from our previous study gives the kinetic isotope effect of k H / k D = 5.33 ± 0.41. OH + CH3C(O)CH3 → Products (H) OH + CD3C(O)CD3 → Products(D) This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The rate coefficient ratio ofk 1/k 2=0.83±0.21 has been determined for the reactions Br+neo-C5H12 (1) and Br+C2H6 (2) by applying the relative-rate kinetic method atT=298 K.  相似文献   

12.
Radical telomerization of vinyl chloride with benzyl bromide and the competitive reaction of benzyl bromide with vinyl chloride and trimethylvinylsilane have been studied. The relative rate constant for the addition of C6H5C · H2 to vinyl chloride,k rel (with respect to trimethylvinylsilane), is close to unity, whereas the activation energy of the addition of C6H5C.H2 to vinyl chloride is considerably lower (by 7 kcal mol–1) than in the reaction involving trimethylvinylsilane. The possible fragmentation of the radical-adduct C6H5CH2CH2C.HCl was suggested as one of the possible reasons of underestimation ofk rel. The activation energy was estimated by the MPDO/3 method.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 886–888, May, 1993.  相似文献   

13.
The decarboxylation kinetics of 2,4-dihydroxybenzoic acid have been studied in 0.1–8 N aqueous HCl at 50°. At low HCl concentrations, the observed first order rate constant, k, increases with increasing acidity of the solution. In solutions with 3.5–6 N HCl, k remains constant. The D2O solvent isotope effect decreases from kH2O/kD2O = 2.0 in 1N HCl to 1.3 in 5 N HCl, and it remains unchanged at 1.3 if the HCl concentration is increased further to 8 N. It is concluded that an increase of the acidity of the solution causes a change of the rate determining step from slow proton transfer to rate limiting C? C bond cleavage.  相似文献   

14.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

15.
A study of the thermal decomposition of an acetylene–ethane-d6 mixture indicates that the rate constant for hydrogen abstraction from acetylene by methyl is more than 20 times less than for abstraction from ethane. Isotopic exchange is initiated by a rapid reaction between product D atoms and C2H2. A series of experiments involving the reactions of a D2–acetylene mixture indicated that a molecular exchange process was also occurring, and it was shown that d[C2HD]/dt = k[D2]0.7[C2H2]0.3, effective activation energy = 15.8 kcal/mol. This mechanism made an insignificant contribution to isotope exchange in C2H2–C2D6 mixtures.  相似文献   

16.
Sulfenic acids play a prominent role in biology as key participants in cellular signaling relating to redox homeostasis, in the formation of protein‐disulfide linkages, and as the central players in the fascinating organosulfur chemistry of the Allium species (e.g., garlic). Despite their relevance, direct measurements of their reaction kinetics have proven difficult owing to their high reactivity. Herein, we describe the results of hydrocarbon autoxidations inhibited by the persistent 9‐triptycenesulfenic acid, which yields a second order rate constant of 3.0×106 M ?1 s?1 for its reaction with peroxyl radicals in PhCl at 30 °C. This rate constant drops 19‐fold in CH3CN, and is subject to a significant primary deuterium kinetic isotope effect, kH/kD=6.1, supporting a formal H‐atom transfer (HAT) mechanism. Analogous autoxidations inhibited by the Allium‐derived (S)‐benzyl phenylmethanethiosulfinate and a corresponding deuterium‐labeled derivative unequivocally demonstrate the role of sulfenic acids in the radical‐trapping antioxidant activity of thiosulfinates, through the rate‐determining Cope elimination of phenylmethanesulfenic acid (kH/kD≈4.5) and its subsequent formal HAT reaction with peroxyl radicals (kH/kD≈3.5). The rate constant that we derived from these experiments for the reaction of phenylmethanesulfenic acid with peroxyl radicals was 2.8×107 M ?1 s?1; a value 10‐fold larger than that we measured for the reaction of 9‐triptycenesulfenic acid with peroxyl radicals. We propose that whereas phenylmethanesulfenic acid can adopt the optimal syn geometry for a 5‐centre proton‐coupled electron‐transfer reaction with a peroxyl radical, the 9‐triptycenesulfenic is too sterically hindered, and undergoes the reaction instead through the less‐energetically favorable anti geometry, which is reminiscent of a conventional HAT.  相似文献   

17.
Hydrogen, cycloalkene, and bicycloalkyl were found to be the principal products which account for ≈?97% of all products formed in the gas-phase radiolysis of water vapor containing low concentrations of cycloalkanes. From the ratios of cycloalkene-to-bicycloalkyl yields extrapolated to the zero dose, the self- and cross-disproportionation-to-recombination rate constant ratios Δ = kd/kc were determined for the following 12 reactions: Δ(c-C5H9, c-C5H9) = 0.73; Δ(c-C5D9, c-C5D9) = 0.58; Δ(c-C6H11, cC6H11) = 0.59; Δ(c-C6D11, c-C6D11) = 0.46; Δ(c-C5H9, c-C6H11) = 0.28; Δ(c-C5D9, c-C6H11) = 0.28; Δ(c-C5H9, c-C6D11) = 0.24; Δ(c-C5D9, c-C6D11) = 0.24; Δ(c-C6H11, c-C5H9) = 0.33; Δ(c-C6H11, c-C5D9) = 0.25; Δ(c-C6D11, c-C5H9) = 0.35; and Δ(c-C6D11, c-C5D9) = 0.28, where in the case of the cross-disproportionation the symbol Δ(R1,R2) is used to represent kd/kc for the disproportionation in which radical R1 captures a hydrogen (deuterium) atom from radial R2. The geometrical mean rule holds in the cross-combination reactions of cyclopentyl and cyclohexyl radicals. The kinetic isotope effect in the disproportionation reaction was determined as 1.24 ± 0.06.  相似文献   

18.
The metathesis reaction of DI with t-C4H9 generated by 351-nm photolysis of 2,2′-azoisopropane was studied in a low-pressure reactor (VLP? Knudsen cell) in the temperature range of 302–411 K. The data obeyed the following Arrhenius relation when combined with recent data by Rossi and Golden gathered by the same technique (t-C4H9 by thermal decomposition of 2,2′-azoisobutane): log k2D(M?1s?1) = 9.60 – 1.90/θ, where θ = 2.303RT kcal/mol for 302 K < T > 722 K. The metathesis reaction of HI with t-C4H9 was studied at 301 K and resulted in k2H(M?1·s?1) = (3.20 ± 0.62) × 108. An analogous Arrhenius relation was calculated for the protiated system if the small primary isotope effect k2H/k2D was assumed to be √2 at 700 K. It was of the following form: log k2H(M?1·s?1) = 9.73 – 1.68/θ. Preliminary data of Bracey and Walsh indicate that earlier Arrhenius parameters determined for the reverse reaction are somewhat in error. Their value of log k1(M?1·s?1) = 11.5 – 23.8/θ yields 7delta;Hf,3000(t-butyl) = 9.2 kcal/mol and S3000(t-butyl) = 74.2 cal/mol7°K when taken in conjuction with this study.  相似文献   

19.
The oxidation of primary alcohols by sodium N-chloroethylcarbamate in acid solution, results in the formation of corresponding aldehydes. The reaction is first order with respect to the oxidant and alcohol. The rate increases with an increase in acidity. The oxidation of α,α-dideuterioethanol exhibited a primary kinetic isotope, kH/kD = 2.11 at 298 K. The value of solvent isotope effect k(H2O)/k(D2O) = 2.23 at 298 K. Addition of ethyl carbamate does not affect the rate. (EtOC(OH)NHCl)+ has been postulated as the reactive species. Plots of (log k2 + Ho) against (Ho + log[H+]) are linear with the slope, ?, having values from 1.78–1.87. This suggested a proton abstraction by water in the rate-determining step. The rates of oxidation of alcohols bearing both electron-withdrawing and electron-donating groups are more than that of methanol. A concerted mechanism involving transfer of a hydride ion from the C? H bond of the alcohol tothe oxidant and removal of a proton from the O? H group by a water molecule has been proposed.  相似文献   

20.
《Chemical physics letters》1985,116(4):295-301
The value of the proton diffusion coefficient DH+ in ice was extracted from the diffusion-controlled rate kD of the proton recombination reaction RO + H3O+kD ROH + H2O in polycrystalline doped ice. At −10°C, DH+ was estimated to lie between 3.5×10−6 and 1.3×10−5 cm2 s−1, well below the corresponding value of (4.1 ± 0.1)×10−5 cm2 s−1 found in supercooled water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号