首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uphill-Diffusion of Phosphorus in Silicon The drive-in-diffusion of phosphorus in silicon (at 1523 K (1250°C) under pure 02? ambient) starting from a prediffused zone shows, investigated by neutron activation analysis, two particulartities:
  • 1 Uphill-diffusion of phosphorus in the interior of the silicon crystal takes place near to the Si02? Siinterface.
  • 2 The total amount of phosphorus contained in the diffusion zone of the silicon crystal in independent from the duration of drive-in-diffusion. There is not any outdiffusion of phosphorus from the silicon crystal into the Si02? layer.
It is assumed, that the mentioned uphill-diffusion is caused by an inhomogeneous distribution of point defects (e. g. vacancies), which generates a nonfickian dopant flux component. This means, that Einstein's assumption of a symmetrical propability function for jumps of dopant atoms [21] is not valid in this special case of solid diffusion.  相似文献   

2.
3.
The distribution of single dopant or impurity atoms can dramatically alter the properties of semiconductor materials. The sensitivity to detect and localize such single atoms has been greatly improved by the development of aberration correctors for scanning transmission electron microscopes. Today, electron probes with diameters well below 1 Å are available thanks to the improved electron optics. Simultaneous acquisition of image signals and electron energy-loss spectroscopy data provides means of characterization of defect structures in semiconductors with unprecedented detail. In addition to an improvement of the lateral spatial resolution, depth sensitivity is greatly enhanced because of the availability of larger probe forming angles. We report the characterization of an alternate gate dielectric interface structure. Isolated Hf atoms are directly imaged within a SiO2 thin film formed between an HfO2 layer and the silicon substrate. Electron energy-loss spectroscopy shows significant changes of the silicon valence state across the interface structure.  相似文献   

4.
Sulfur doping of silicon beyond the solubility limit by femtosecond laser irradiation leads to near-unity broadband absorption of visible and infrared light and the realization of silicon-based infrared photodetectors. The nature of the infrared absorption is not yet well understood. Here we present a study on the reduction of infrared absorptance after various anneals of different temperatures and durations for three chalcogens (sulfur, selenium, and tellurium) dissolved into silicon by femtosecond laser irradiation. For sulfur doping, we irradiate silicon in SF6 gas; for selenium and tellurium, we evaporate a film onto the silicon and irradiate in N2 gas; lastly, as a control, we irradiated untreated silicon in N2 gas. Our analysis shows that the deactivation of infrared absorption after thermal annealing is likely caused by dopant diffusion. We observe that a characteristic diffusion length—common to all three dopants—leads to the reduction of infrared absorption. Using diffusion theory, we suggest a model in which grain size of the resolidified surface layer can account for this characteristic diffusion length, indicating that deactivation of infrared absorptance may be caused by precipitation of the dopant at the grain boundaries.  相似文献   

5.
 Incorporation of phosphorus into silicon from a spin-on dopant layer (SOD) at 400 °C is described. Annealing experiments were carried out with SOD films deposited on (100) silicon substrates by using the spin-on technique. Conventional heating on a hotplate in normal atmosphere and a temperature range up to 400 °C was used to study the dopant incorporation. After removing the SOD-films one part of the silicon substrates was annealed at higher temperatures. Investigations were carried out by SIMS, SAM, XPS, HTEM, stripping Hall and Van der Pauw measurements before and after the high temperature annealing. Chemical phosphorus concentration profiles obtained from low temperature annealed samples showed diffusion depths of 60–80 nm (extrapolated to a substrate doping level of 1016 cm-3) and surface concentrations of 1019–1020 cm-3. Electron concentration profiles exhibiting maximum values around 2⋅1019 cm-3 could be measured on high temperature annealed samples only. Received: 28 March 1996/Accepted: 19 August 1996  相似文献   

6.
Imaging experiments at the European X‐ray Free Electron Laser (XFEL) require silicon pixel sensors with extraordinary performance specifications: doses of up to 1 GGy of 12 keV photons, up to 105 12 keV photons per 200 µm × 200 µm pixel arriving within less than 100 fs, and a time interval between XFEL pulses of 220 ns. To address these challenges, in particular the question of radiation damage, the properties of the SiO2 layer and of the Si–SiO2 interface, using MOS (metal‐oxide‐semiconductor) capacitors manufactured on high‐resistivity n‐type silicon irradiated to X‐ray doses between 10 kGy and 1 GGy, have been studied. Measurements of capacitance/conductance–voltage (C/G–V) at different frequencies, as well as of thermal dielectric relaxation current (TDRC), have been performed. The data can be described by a dose‐dependent oxide charge density and three dominant radiation‐induced interface states with Gaussian‐like energy distributions in the silicon band gap. It is found that the densities of the fixed oxide charges and of the three interface states increase up to dose values of approximately 10 MGy and then saturate or even decrease. The shapes and the frequency dependences of the C/G–V measurements can be quantitatively described by a simple model using the parameters extracted from the TDRC measurements.  相似文献   

7.
An understanding of the exact structural makeup of dielectric interface is crucial for development of novel gate materials. In this paper a study of the HfO2/Si interface created by the low-temperature deposition ultrathin stoichiometric HfO2 on Si substrates by reactive sputtering is presented. Analysis, quantification and calculation of layer thickness of an HfO2/Hf-Si-Ox/SiO2 gate stack dielectrics have been performed, using X-ray photoelectron spectroscopy (XPS) depth profile method, angle resolved XPS and interface modeling by XPS data processing software. The results obtained were found to be in good agreement with the high frequency capacitance-voltage (C-V) measurements. The results suggest a development of a complex three layer dielectric stack, including hafnium dioxide layer, a narrow interface of hafnium silicate and broad region of oxygen diffusion into silicon wafer. The diffusion of oxygen was found particularly detrimental to the electrical properties of the stack, as this oxygen concentration gradient leads to the formation of suboxides of silicon with a lower permittivity, κ.  相似文献   

8.
Micro-Raman scattering measurements were used to study the silicon delta-doped layer density variation effect on InAs ultrathin layer embedded in silicon-delta-doped GaAs/AlGaAs high electron mobility transistors (HEMTs) structures properties. These structures were grown by molecular beam epitaxy on GaAs substrates with different silicon (Si) delta-doped layer densities. Two coupled plasmon–longitudinal optical (LO) phonon modes (L− and L+) were observed in the micro-Raman spectra of the Si-delta-doped samples, and both their wave numbers and intensities were dependent on the silicon delta-doped layer density. There is evidence to suggest that the increase of the Si doping level results in the increase of exciton–phonon scattering which is mainly due to the incorporation of Si and the increase of the two-dimensional electron gas (2DEG) in the InAs/GaAs interface. From fitting the temperature-dependence of full width at half maximum (FWHM) of quantum well’s photoluminescence peak (P1) by the exciton–photon coupling model, it was found that the interaction between exciton and phonon in Si-delta-doped quantum wells was higher than that in the undoped sample. This result was confirmed as resulting from the increase of plasmon–phonon scattering which is attributed to the increase of free carriers donated from implanted Si dopant. The self-consistent Poisson–Schrödinger model calculation results are in good agreement with the experimental results, where the 2DEG densities increase linearly with increasing the Si-delta-doped layer density.  相似文献   

9.
The electrical properties of Si nanowires covered by a SiO2 shell are influenced by the properties of the Si/SiO2 interface. This interface can be characterized by the fixed oxide charge density Qf and the interface trap level density Dit. We derive expressions for the effective charge carrier density in silicon nanowires as a function of Qf, Dit, the nanowire radius, and the dopant density. It is found that a nanowire is fully depleted when its radius is smaller than a critical radius acrit. An analytic expression for acrit is derived. PACS 68.65.-k; 61.46.+w; 81.10.Bk  相似文献   

10.
安霞  范春晖  黄如  郭岳  徐聪  张兴 《中国物理 B》2009,18(10):4465-4469
This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide-as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11~eV at a boron dose of 1015~cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.  相似文献   

11.
The effect of static magnetic fields on the dynamics of surface dislocation segments, as well as the diffusion mobility of a dopant in silicon single crystals, has been analyzed. It has been experimentally found that the preliminary treatment of p-type silicon plates (the dopant is boron with a concentration of 1016 cm−3) in the static magnetic field (B = 1 T, a treatment time of 30 min) leads to an increase in the mobility of surface dislocation segments. The characteristic times of observed changes (about 80 h) and the threshold dopant concentration (1015 cm−3) below which the magneto-optical effect in silicon is not fixed have been determined. It has been found that diffusion processes in dislocation-free silicon are magnetically sensitive: the phosphorus diffusion depth in p-type silicon that is preliminarily aged in the static magnetic field increases (by approximately 20%) compared to the reference samples.  相似文献   

12.
Surface Plasmon excitations are measured by high resolution electron energy loss spectroscopy (HREELS) on highyln-doped, clean Si(100) wafers. After different annealing cycles at 900°C the plasmon loss shifts to lower loss energy. This effect can be quantitatively described by out-diffusion of the phosphorus dopant. The assumption of diffusion profiles and fits of calculated loss spectra to the experimental data allow a determination of the diffusion constant of phosphorus in silicon.  相似文献   

13.
The extent and phase chemical composition of the interface forming under atomic layer deposition (ALD) of a 6-nm-thick Al2O3 film on the surface of crystalline silicon (c-Si) has been studied by depthresolved, ultrasoft x-ray emission spectroscopy. ALD is shown to produce a layer of mixed Al2O3 and SiO2 oxides about 6–8 nm thick, in which silicon dioxide is present even on the sample surface and its concentration increases as one approaches the interface with the substrate. It is assumed that such a complex structure of the layer is the result of interdiffusion of oxygen into the layer and of silicon from the substrate to the surface over grain boundaries of polycrystalline Al2O3, followed by silicon oxidation. Neither the formation of clusters of metallic aluminum near the boundary with c-Si nor aluminum diffusion into the substrate was revealed. It was established that ALD-deposited Al2O3 layers with a thickness up to 60 nm have similar structure.  相似文献   

14.
The influence of an oxide coating on the strength characteristics of single-crystal silicon surface layers is investigated by the microindentation method. It is shown experimentally that a strengthened layer with a thickness of 0.2–0.4 μm and a microhardness of 20–35 GPa, which is two or three times as much as the microhardness of bulk single-crystal silicon, is present near the SiO2/Si interface. The thickness and microhardness of this layer depends on the growth conditions of the oxide. The formation of this layer is most probably caused by interstitial silicon atoms formed near the SiO2/Si interface during silicon oxidation.  相似文献   

15.
本文中研究了O+(200keV,1.8×1018/cm2)和N+(190keV,1.8×1018/cm2)注入Si形成SOI(Silicon on Insulator)结构的界面及埋层的化学组成。俄歇能谱的测量和研究结果表明:注O+的SOI结构在经1300℃,5h退火后,其表层Si和氧化硅埋层的界面存在一个不饱和氧化硅状态,氧化硅埋层是由SiO2相和这不饱和氧化硅态组成,而且氧化硅埋层和体硅界面不同于表层Si和氧化硅埋层界面;注N+的SOI结构在经1200℃,2h退火后,其氮化硅埋层中存在一个富N的疏松夹层,表层Si和氮化硅埋层界面与氮化硅埋层和体硅界面性质亦不同。这些结果与红外吸收和透射电子显微镜及离子背散射谱的分析结果相一致。还对两种SOI结构界面与埋层的不同特征的原因进行了分析讨论。 关键词:  相似文献   

16.
The diffusion of phosphorus using a phosphorous oxychloride (POCl3) source in silicon has been used widely in crystalline silicon solar cells. The thermal diffusion process in the furnace consists of two steps: pre-deposition and drive-in. The phosphorous doping profile via thermal diffusion often exhibits high concentrations in the surface-near emitter, which result in a recombination increase. This layer, called the dead layer, should be inhibited in order to fabricate high efficiency silicon solar cells. In this paper, the amount of the POCl3 flow rate was varied during the pre-deposition process in order to minimize the dead layer, and the characteristics of the phosphosilicate glass (PSG) and emitter were analyzed. From the secondary ion mass spectroscopy (SIMS) and electrochemical capacitance–voltage profiler (ECV) measurements, the emitter formed using a POCl3 flow rate of 1000 sccm contained the least amount of inactive dopant and resulted in reasonable performance in the silicon solar cell. As the POCl3 flow rate increased, the doped silicon wafer included electrically inactive P near the surface, which functions as a defect degrading the electrical performance of the emitter. As a result of this, the removal of the dead layer containing the inactive P was attempted through dipping the doped wafer in a HF solution. After this process, the emitter saturation current density and implied Voc were improved. The completed solar cells and their external quantum efficiencies at a short wavelength also demonstrated improved performance. A quantitative analysis of the emitter can provide a deeper understanding of methods to improve the electrical characteristics of the silicon solar cell.  相似文献   

17.
Techniques of spectral reflectometry and interferometry are used for measuring small changes in thickness of SiO2 thin film grown by thermal oxidation on different silicon substrates. A slightly dispersive Michelson interferometer with one of its mirrors replaced by a thin-film structure is used to measure the reflectance and interferometric phase of the thin-film structure at the same time. The experimental data are used to determine precisely the thickness of the SiO2 thin film on silicon wafers of two crystallographic orientations and different dopant concentrations. We confirmed very good agreement between the experimental data and theory and revealed that the thin-film thickness, which varies with the type of silicon substrate, depends linearly on the wavelength at which minimum in the spectral reflectance occurs. Similar behaviour was revealed for the interferometric phase.  相似文献   

18.
用四探针测量薄层电导方法及阳极氧化去层技术,测定了磷在硅中扩散的具体分布,在恒表面浓度下,它们偏离余误差函数分布。如认为这是由于扩散系数是杂质浓度的函数,实验得到了当杂质浓度大于1019原子/厘米3时,扩散系数随杂质浓度增加而增大的强烈依赖关系。用同样方法测定了磷通过二氧化硅层后在硅中扩散的具体分布,研究了这些杂质分布的特性,实验表明,不同厚度的氧化层在1300℃高温下仍具有掩蔽效应,在完全掩蔽失效时间附近,杂质分布的共同特点是表面浓度较低(~1017原子/厘米3)、结较浅(~1微米)。对不同厚度的氧化层,经过足够的时间后,硅中表面浓度不受氧化层厚度的影响,而只由扩散源的蒸气压决定。磷通过氧化层后扩散的具体分布情况还与扩散源的性质、条件等密切相关。扩散过程中观察到的氧化层厚度增长有可能影响表面附近杂质的具体分布情况。  相似文献   

19.
Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young’s modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation. Supported by the National Natural Science Foundation of China (Grant Nos 10725211, 10721202 and 10472119) and the Key Project of Chinese Academy of Sciences (Grant Nos KJCX2-YW-M04 and KJCX-SW-L08)  相似文献   

20.
UV excimer lasers have been used to dope semiconductors by a one-step process in which the laser serves both to melt a controlled thickness of a sample placed in dopant ambient and to photodissociate the dopant molecules themselves. Here we report the boron doping of silicon by means of an ArF (193 nm) excimer laser. Dopant atoms are obtained by photolysis of BCl3 or pyrolysis of BF3 molecules. The doping is performed both in gas ambient and using only an adsorbed layer. We have investigated the dependence of doping parameters such as laser pulse repetition and gas pressure on the subsequent boron impurity profiles and the dopant incorporation rate. These results indicate that the laser doping process is dopant-flux limited for BF3 and externally rate limited for BCl3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号