首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Horse spleen ferritin was covalently attached to SAM‐modified gold electrodes using cross‐linking agents. Reduction of ferritin occurs at negative potentials and is electrochemically irreversible. The voltammetry reveals the presence of a new electrochemical couple that has been determined to be a dissolved iron species released upon the reduction of ferritin. Covalently attached ferritin retains its ability to release iron as evidenced by the absence of the dissolved couple peaks when ferritin is reduced in the presence of nitrilotriacetate. As the SAM chain length increases, the reduction potential becomes more negative, suggesting a tunneling mechanism is involved in the electron transfer.  相似文献   

2.
铁蛋白在修饰金电极上的直接电化学研究   总被引:2,自引:0,他引:2  
于萍  齐斌  崔小强  杨帆  黎拒难  杨秀荣 《分析化学》2005,33(9):1239-1242
利用巯基丙酸单分子层修饰金电极,获得了铁蛋白的直接电化学,用SPR表征了电极组装过程,循环伏安法研究了这一电子转移过程。比较了静电吸附与键合和固定2种修饰方法的不同,发现利用键合固定的方法并不能像细胞色素c那样得到稳定的电化学信号,这可能是由于经过多圈扫描以后,铁蛋白的构象发生了变化。一个电位调制的关于铁的释放与获取机理被进一步证实。  相似文献   

3.
Ferritin adsorbs on gold electrodes modified with a layer of 8-mercaptooctanoic acid. Cyclic voltammetry indicates the reduction of the ferritin layer at negative potentials followed by an anodic process in the return scan. However, a second cycle reveals that the latter signal is the anodic branch of a new electrochemical couple rather than the anodic branch of adsorbed ferritin. Control experiments including stirring the scan solution, electrochemical induction of iron release, and varying the scan rate strongly support the hypothesis that a dissolved iron species is released when ferritin is reduced, but its oxidized form adsorbs onto the SAM-modified electrode surface.  相似文献   

4.
Electron-transfer reactions of redox solutes at electrode/solution interfaces are facilitated when their formal potentials match, or are close to, the energy of an electronic state of the electrode. Metal electrodes have a continuum of electronic levels, and redox reactions occur without restraint over a wide span of electrode potentials. This paper shows that reactions on electrodes composed of films of metal nanoparticles do have constraints when the nanoparticles are sufficiently small and molecule-like so as to exhibit energy gaps, and resist electron transfers with redox solutes at potentials within the energy gap. When solute formal potentials are near the electronic states of the nanoparticles in the film, electron-transfer reactions can occur. The electronic states of the nanoparticle film electrodes are reflected in the formal potentials of the electrochemical reactions of the dissolved nanoparticles at naked metal electrodes. These ideas are demonstrated by voltammetry of aqueous solutions of the redox solutes methyl viologen, ruthenium hexammine, and two ferrocene derivatives at films on electrodes of 1.1 nm core diameter Au nanoparticles coated with protecting monolayers of phenylethanethiolate ligands. The methyl viologen solute is unreactive at the nanoparticle film electrode, having a formal potential lying in the nanoparticle's energy gap. The other solutes exhibit electron transfers, albeit slowed by the electron hopping resistance of the nanoparticle film. The nanoparticles are not linked together, being insoluble in the aqueous medium; a small amount of an organic additive (acetonitrile) facilitates observing the redox solute voltammetry.  相似文献   

5.
应用循环伏安、极化曲线和交流阻抗等电化学方法研究了V(Ⅳ)/V(Ⅴ)电对在石墨毡复合电极上反应的速控步骤.结果表明,V(Ⅳ)/V(Ⅴ)电对在石墨毡电极上的反应属准可逆过程,且氧化过程包含有后置化学转化步骤;该过程Tafel斜率的实验值为0.124,而理论计算的,以电化学步骤作为控制步骤的Tafel斜率约0.12,两者吻合很好,表明该氧化过程受电化学步骤控制;以等效电路拟合不同极化电位下的交流阻抗,得出该电化学反应阻抗远大于其他阻抗,意味着电化学过程可能是电极反应的控制步骤,与实验得到的极化曲线分析结果相一致.  相似文献   

6.
In an effort to find conditions favouring bioelectrocatalytic reduction of oxygen by surface-immobilised human ceruloplasmin (Cp), direct electron transfer (DET) reactions between Cp and an extended range of surfaces were considered. Exploiting advances in surface nanotechnology, bare and carbon-nanotube-modified spectrographic graphite electrodes as well as bare, thiol- and gold-nanoparticle-modified gold electrodes were considered, and ellipsometry provided clues as to the amount and form of adsorbed Cp. DET was studied under different conditions by cyclic voltammetry and chronoamperometry. Two Faradaic processes with midpoint potentials of about 400 mV and 700 mV vs. NHE, corresponding to the redox transformation of copper sites of Cp, were clearly observed. In spite of the significant amount of Cp adsorbed on the electrode surfaces, as well as the quite fast DET reactions between the redox enzyme and electrodes, bioelectrocatalytic reduction of oxygen by immobilised Cp was never registered. The bioelectrocatalytic inertness of this complex multi-functional redox enzyme interacting with a variety of surfaces might be associated with a very complex mechanism of intramolecular electron transfer involving a kinetic trapping behaviour.  相似文献   

7.
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs.  相似文献   

8.
Ye B  Zhou X 《Talanta》1997,44(5):831-836
The direct electron transfer reactions between tyrosinase and silver electrode were investigated by using cyclic voltammetry and potential-step chronoamperometry as well as current-step chronopotentiometry techniques. The kinetics of these reactions is quasi-reversible with two electron transfer reactions and 0.030 s(-1) apparent electrode reaction rate constant. The results demonstrate that neither electrode surface modification nor the inclusion of mediators is necessary to study the electron transfer reactions of tyrosinase at silver electrodes. Moreover, both the anodic and the cathodic currents are linear relationship with the tyrosinase concentration in the range of 1 x 10(-9) approximately 5 x 10(-8)moll(-1). It is possible to be used as a method of analyzing tyrosinase concentration.  相似文献   

9.
Single-wall carbon nanotubes (SWNTs) chemically assembled on gold substrates were employed as electrodes to investigate the charge transfer process between SWNTs and the underlying substrates. Cyclic voltammetry (CV) indicates that the assembled SWNTs allow electron communication between a gold electrode and the redox couple in solution, though the SWNTs are linked directly onto the insulating monolayer of 11-amino-n-undecanethiol (AUT) on the Au substrate. An electron transfer (ET) mechanism, which contains an electron tunneling process across the AUT monolayer, is proposed to explain the CV behavior of Au/AUT/SWNT electrodes. Electrochemical measurements show that the apparent electron tunneling resistance, which depends on the surface density of assembled SWNTs, has apparent effects similar to those of solution resistance on CV behavior . The theory of solution resistance is used to describe the apparent tunneling resistance. The experimental results of the dependence of ET parameter psi on the potential scan rate upsilon are in good agreement with the theoretical predictions. Kinetic studies of the chemical assembly of SWNTs by atomic force microscopic (AFM), electrochemical, and Raman spectroscopic methods reveal that two distinct assembly kinetics exist: a relatively fast step that is dominated by the surface reaction, and a successive slow step that is governed by bundle formation.  相似文献   

10.
Cyclic voltammetry has been used to study the heterogeneous electron transfer kinetics of horse heart cytochrome c in pH 7 tris/cacodylate media at several electrode surfaces. Reversible voltammetric responses (formal heterogeneous electron transfer rate constant>10?2 cm/s) were observed at bare gold electrodes and at tin-doped indium oxide semiconductor electrodes for certain experimental conditions. Quasireversible voltammetric responses were more typically observed at fluorine-doped tin oxide semiconductor electrodes, bare platinum electrodes, and at the indium oxide electrodes. Reaction rates at bare metal electrodes were strongly dependent on pretreatment procedures and experimental protocol. Reaction rates at metal oxide electrodes were strongly dependent on solution conditions, pretreatment procedures, and on the hydration state of the electrode surface. A general mechanistic scheme involving both interfacial electrostatic and chemical interactions is proposed for cytochrome c electrode reactions. The asymmetric distribution of surface charges on cytochrome c appears to play a dominant role in controlling electron transfer rates by its interaction with the electric field at the electrode surface. Electron transfer distances are also considered, and it is concluded that electron transfer between an electrode surface and the exposed heme edge of properly oriented cytochrome c molecules involves maximum distances of ca. 0.6–0.9 nm.  相似文献   

11.
Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins.  相似文献   

12.
《Chemphyschem》2003,4(11):1183-1188
The redox metalloprotein yeast cytochrome c was directly self‐chemisorbed on “bare” gold electrodes through the free sulfur‐containing group Cys102. Topological, spectroscopic, and electron transfer properties of the immobilised molecules were investigated by in situ scanning probe microscopy and cyclic voltammetry. Atomic force and scanning tunnelling microscopy revealed individual protein molecules adsorbed on the gold substrate, with no evidence of aggregates. The adsorbed proteins appear to be firmly bound to gold and display dimensions in good agreement with crystallographic data. Cyclic voltammetric analysis showed that up to 84 % of the electrode surface is functionalised with electroactive proteins whose measured redox midpoint potential is in good agreement with the formal potential. Our results clearly indicate that this variant of cytochrome c is adsorbed on bare gold electrodes with preservation of morphological properties and redox functionality.  相似文献   

13.
The potentials of the anodic peak of ascorbic acid oxidation and the potential differences of anodic and cathodic peaks (ΔE p) of the hydroquinone/benzoquinone redox system at an electrode made of a graphite-epoxy composite are determined in weakly acidic and neutral supporting electrolytes by direct and cyclic voltammetry. The results obtained are compared with thermodynamic values and with the available values of these parameters at different solid electrodes for the above-mentioned redox systems. The effect of aging of the surface of electrodes made of graphite-epoxy composites on the potentials and peak currents of the anodic oxidation of ascorbic acid are studied. It is demonstrated that the regeneration of the electrode surface by mechanically cutting thin layers is important for reducing the δE p value of the hydroquinone/benzoquinone redox system down to 28–30 mV in supporting electrolytes with pH 2.0 and 7.0. This value is typical of thermodynamically reversible electrode reactions involving two-electron transfer at 20–25°C.  相似文献   

14.
2,3—二氨基吩嗪的薄层光谱电化学研究   总被引:1,自引:0,他引:1  
焦奎  崔光磊  杨涛  牛淑妍 《化学学报》2003,61(4):514-519
研究了2,3—二氨基吩嗪(DAP)在金圆盘电极、金超微电极上的循环伏安行为 和在金网栅电极上的薄层循环伏安行为.在pH2.0的B—R缓冲溶液中的2,3—二氨 基吩嗪在金圆盘电极上为准可逆氧还过程;以超微电极法求得了2,3—二氨基吩嗪 在pH2.0的B—R缓冲溶液中的扩散系数,由耗竭性库仑电解和循环伏安法求得其电 极反应电子转移数和H+反应级数均为2,实验说明参与电极反应的H+也为2,并用循 环伏安法求得其标准电极反应速率常数.采用紫外—可见薄层光谱电化学方法测得 2,3—二氨基吩嗪的克式量电位和电子转移数,与电化学实验结果一致;双电位阶 跃—计时吸收紫外—可见薄层光谱电化学实验说明,2,3—二氨基吩嗪电还原无随 后化学反应,其在电极上经历了H+eH+e的两步一电子过程,生成产物2,3—二氨基 -5,10-二氢吩嗪.  相似文献   

15.
Ferritin-immobilized poly(l-lysine)-modified electrodes showed well-defined redox waves representing ferritin. Cathodic and anodic peak currents obtained from cyclic voltammograms were proportional to potential sweep rates. From charge flow values during oxidation or reduction reactions calculated by peak areas in cyclic voltammograms, and the surface coverage of ferritin, reacted iron atoms per ferritin molecule were calculated. Obtained numbers of reacted iron atoms were significantly smaller than expected values from iron atoms at ferrihydrite core surfaces of ferritin, which would be caused by the rate-determining ion flow through ion channels of ferritin to compensate for charges in the ferritin cavity. Anodic and cathodic peak potentials in cyclic voltammograms were significantly dependent on cationic species in the solution, though voltammetric shapes and peak currents were independent of cations. From the obtained results that structural changes in ferritin were not detected by fluorescent spectra, it is thought that the cationic dependence on ferritin redox peak potentials is caused by ferritin cores.  相似文献   

16.
Direct electrochemistry of horse heart cytochrome c (cytc) has been obtained at a gold electrode constructed by self‐assembling fumed silica particles (FSPs) onto a silane monolayer. A pair of well‐defined and nearly symmetrical redox peaks of cytc is obtained at the FSPs film modified gold electrode. Cyclic voltammetry (CV) and tapping‐mode atomic force microscopy (AFM) are used to characterize the FSPs film modified electrode, showing that the FSPs can provide a favorable microenvironment for cytc and facilitate the direct electron transfer between the cytc and the gold electrode, which may propose an approach to realize the direct electrochemistry of other proteins.  相似文献   

17.
We report herein thin film voltammetry and kinetics of electron transfer for redox proteins in rat liver microsomes for the first time. Films were made layer-by-layer from liver microsomes and polycations on pyrolytic graphite electrodes. Cyclic voltammograms were chemically reversible with a midpoint potential of -0.48 V vs SCE at 0.1 V s(-1) in pH 7.0 phosphate buffer. Reduction peak potentials shifted negative at higher scan rates, and oxidation-reduction peak current ratios were approximately 1 consistent with non-ideal quasireversible thin film voltammetry. Analysis of oxidation-reduction peak separations gave an average apparent surface electron transfer rate constant of 30 s(-1). Absence of significant electrocatalytic reduction of O(2) or H(2)O(2) and lack of shift in midpoint potential when CO is added that indicates lack of an iron heme cofactor suggest that peaks can be attributed to oxidoreductases present in the microsomes rather than cytochrome P450 enzymes.  相似文献   

18.
This paper demonstrates the direct electron transfer between the heme moiety of horse hearth cytochrome c and a pyridinyl group on self‐assembled‐monolayer‐modified Si(100) electrodes. Self‐assembled monolayers (SAMs) containing the putative receptor ligand were prepared by a step‐wise procedure using “click” reactions of acetylene‐terminated alkyl monolayers and isonicotinic acid azide derivatives. Unoxidized Si(100) electrodes, possessing either isonicotinate or isonicotinamide receptor ligands, were characterized using X‐ray photoelectron spectroscopy, contact‐angle goniometry, cyclic voltammetry, and electrochemical impedance spectroscopy. The ability of isonicotinic acid terminated layers to coordinatively bind the redox center of cytochrome c was found to be restricted to pyridinyl assemblies with a para‐ester linkage present. The protocol detailed here offers an experimentally simple modular approach to producing chemically well‐defined SAMs on silicon surfaces for direct electrochemistry of a well‐studied model redox protein.  相似文献   

19.
We described reversible affinity interactions of antibody molecules at a chemically functionalized electrode surface for a repeatedly renewable affinity-biosensing interface. Underlying biofunctionalizable monolayers were constructed with poly(amidoamine) dendrimers, whose surface chain-end groups were double-functionalized with biotinyl ligand and ferrocenyl groups for biospecific recognition and electron transfer reactions, respectively. Functionalized monolayers on gold electrodes provide platform surfaces for biospecific recognition reaction with monoclonal anti-biotin antibody molecules. Bound antibody molecules were dissociated from the surface via displacement reaction by the addition of free biotin in solution, enabling the affinity surface to be renewed and repeatedly utilized. Tracking of the association/dissociation reaction cycles were performed by registering the bioelectrocatalytic currents at the electrode using glucose oxidase (GOx) as a signal generator and ferrocenyl-tethered dendrimer (Fc-D) as an electron transferring mediator in electrolyte. Shielding of the affinity surface by biospecifically bound antibody molecules caused hindrance in electron transfer, resulting in reduced signal from cyclic voltammetry. By the displacement reaction using free biotin, bound antibody molecules were dissociated from the surface and the bioelectrocatalytic signal was restored. With the affinity surfaces constructed in this work, continuous association/dissociation reactions have been successfully accomplished, providing a possibility of reusable affinity biosensing interface.  相似文献   

20.
Herein, we report the first experimental investigation on the effect of varying the position of redox-active moieties, within the electrical double layer, on the apparent formal potential and on the electron transfer rate constant. This was achieved using a rigid class of molecules, norbornylogous bridges, to place redox species (ferrocene) at a fixed position above the surface of the electrode. Cyclic voltammetry and alternating current voltammetry were used to calculate the apparent formal potential and the electron transfer rate constant for the electron transfer between the ferrocene and the gold electrode. We use the effect of electric field on the apparent formal potential measurement of the surface-bound redox species to calculate the potential drop from the initiation of the electrical double layer to different distances above it. It was found that self-assembled monolayers formed from ω-hydroxyalkanethiol have a potential profile very similar to that described by classical theories for bare metal electrodes. A steep drop in potential in the Stern layer was observed followed by a smaller potential drop in the Gouy-Chapman layer. The electron transfer rate constant was found to decrease as the distance between the ferrocene moiety and the initiation of the double layer is increased. Thus, the electron transfer rate constant appears to be dependent on ion concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号