首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles (<2 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP NPs) were prepared by reduction of AuCl4- with NaBH4 in the presence of PVP and characterized via an array of methods including optical absorption spectroscopy, transmission electron microscopy, X-ray diffraction, X-ray absorption near-edge structure, extended X-ray absorption fine structure, and X-ray photoelectron spectroscopy. We demonstrate for the first time that the Au:PVP NPs act as catalyst toward homocoupling of phenylboronic acid in water under aerobic conditions. Suppression of biphenyl formation under anaerobic conditions indicates that molecular oxygen dissolved in water is intimately involved in the coupling reactions. A mechanism of the aerobic homocoupling catalyzed by the Au:PVP NPs is proposed on the basis of a crucial role of dissolved oxygen, steric effects on the product yields, and the well-established mechanism for the Pd(II)-based catalysts.  相似文献   

2.
We report on the first synthesis of alkanethiolate-protected Au55 (11 kDa), which has been a "missing" counterpart of Schmid's Au55(PR3)12Cl6. Au:SCx clusters (x = 12, 18) were prepared by the reaction of alkanethiol (CxSH) with polymer-stabilized Au clusters ( approximately 1.3 nm) and subsequently incubated in neat CxSH. The resulting clusters were successfully fractionated by recycling gel permeation chromatography into Au approximately 38:SCx and Au approximately 55:SCx and identified by laser-desorption ionization mass spectrometry. The Au approximately 55:SCx clusters exhibited structured optical spectra, suggesting molecular-like properties. The thiolate monolayers were found to be liquid-like on the basis of the IR spectrum and the monolayer thickness, which was estimated from the hydrodynamic diameter.  相似文献   

3.
Small gold clusters (approximately 1 nm) protected by molecules of a tripeptide, glutathione (GSH), were prepared by reductive decomposition of Au(I)-SG polymers at a low temperature and separated into a number of fractions by polyacrylamide gel electrophoresis (PAGE). Chemical compositions of the fractionated clusters determined previously by electrospray ionization (ESI) mass spectrometry (Negishi, Y. et al. J.Am. Chem. Soc. 2004, 126, 6518) were reassessed by taking advantage of freshly prepared samples, higher mass resolution, and more accurate mass calibration; the nine smallest components are reassigned to Au10(SG)10, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au25(SG)18, Au29(SG)20, Au33(SG)22, and Au39(SG)24. These assignments were further confirmed by measuring the mass spectra of the isolated Au:S(h-G) clusters, where h-GSH is a homoglutathione. It is proposed that a series of the isolated Au:SG clusters corresponds to kinetically trapped intermediates of the growing Au cores. The relative abundance of the isolated clusters was correlated well with the thermodynamic stabilities against unimolecular decomposition. The electronic structures of the isolated Au:SG clusters were probed by X-ray photoelectron spectroscopy (XPS) and optical spectroscopy. The Au(4f) XPS spectra illustrate substantial electron donation from the gold cores to the GS ligands in the Au:SG clusters. The optical absorption and photoluminescence spectra indicate that the electronic structures of the Au:SG clusters are well quantized; embryos of the sp band of the bulk gold evolve remarkably depending on the number of the gold atoms and GS ligands. The comparison of these spectral data with those of sodium Au(I) thiomalate and 1.8 nm Au:SG nanocrystals (NCs) reveals that the subnanometer-sized Au clusters thiolated constitute a distinct class of binary system which lies between the Au(I)-thiolate complexes and thiolate-protected Au NCs.  相似文献   

4.
PVP-protected Ag(core)/Au(shell) bimetallic nanoparticles of enough small size, i.e., 1.4nm in diameter were synthesized in one-vessel using simultaneous reduction of the corresponding ions with rapid injection of NaBH(4), and characterized by HR-TEM. The Ag(core)/Au(shell) bimetallic nanoparticles show a high and durable catalytic activity for the aerobic glucose oxidation, and the catalyst can be stably kept for more than 2months under ambient conditions. The highest activity (16,890mol-glucoseh(-1)mol-metal(-1)) was observed for the bimetallic nanoparticles with Ag/Au atomic ratio of 2/8, the TOF value of which is several times higher than that of Au nanoparticles with nearly the same particle size. The higher catalytic activity of the prepared bimetallic nanoparticles than the usual Au nanoparticles can be ascribed to: (1) the small average diameter, usually less than 2.0nm, and (2) the electronic charge transfer effect from adjacent Ag atoms and protecting PVP to Au active sites. In contrast, the Ag-Au alloy nanoparticles, synthesized by dropwise addition of NaBH(4) into the starting solution and having the large mean particle size, showed a low catalytic activity.  相似文献   

5.
(1R*,4S*,4aR*,9aS*,10S*)-10-Hydroxy-10-phenyl-1,4a,9a,10-tetrahydro-1,4-methanoanthracen-9(4H)-one (1c) was prepared for the elucidation of the reaction mechanism of intramolecular hydroalkoxylation of alkenes catalyzed by gold nanoclusters stabilized by a hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (Au:PVP). It was found that the reaction proceeded via anti-addition of alcohol to the alkene assisted by p-activation of the gold clusters, which is the same mechanism as the hydroamination by toluenesulfonamides.  相似文献   

6.
Gold nanoclusters (phi = 1.3 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP NCs) readily oxidize benzylic alcohols to the corresponding aldehydes and/or carboxylic acids under ambient temperature in water. Kinetic measurement revealed that smaller Au:PVP NCs exhibit higher catalytic activity than larger (9.5 nm) homologues and, more surprisingly, than Pd:PVP NCs of comparable size (1.5 and 2.2 nm). On the basis of the marked difference in the kinetic isotope effect and activation energy between Au:PVP and Pd:PVP NCs, a reaction mechanism for alcohol oxidation catalyzed by Au:PVP NCs is proposed in which a superoxo-like molecular oxygen species adsorbed on the surface of the small Au NCs abstracts a hydrogen atom from the alkoxide.  相似文献   

7.
聚(N-乙烯基-2-吡咯烷酮)稳定的金簇合物(Au:PVP)的质谱结果表明,来源于合成前驱体的Cl吸附质主要存在于Au34和Au43簇合物上。金簇合物上Cl吸附质的数量不影响其催化有氧苯甲醇氧化性能,表明Cl原子与Au簇合物间存在较弱的键合作用。相反,用Br替代Au34和Au43簇合物上Cl显著抑制了其催化活性,但对其电子结构没有任何影响。这表明, Br原子与金簇合物的键合较强,在空间上堵塞了活性位。因Br吸附质而导致活性显著下降表明, Au34和Au43簇合物对Au:PVP催化活性起主要贡献。  相似文献   

8.
Nanoparticles of CdS were prepared at 303 K by aqueous precipitation method using CdSO4 and (NH4)2S in presence of the stabilizing agent thioglycerol. Adjustment of the thioglycerol (T) to ammonium sulphide (A) ratio (T:A) from 1:25 to 1:3.3 was done during synthesis and nanoparticles of different size were obtained. The prepared colloids were characterized by UV-vis and photoluminescence (PL) spectroscopic studies. Prominent first and second excitonic transitions are observed in the UV-vis spectrum of the colloid prepared with a T:A ratio of 1:3.3. Particle size analysis was done using XRD, high resolution TEM and dynamic light scattering and found to be approximately 3 nm. UV-vis and PL spectral features also agree with this particle size in colloid with T:A of 1:3.3. The band gap of CdS quantum dots has increased from the bulk value 2.4-2.9 eV. PL spectra show quantum size effect and the peak is shifted from 628 to 556 nm when the ratio of T:A was changed from 1:25 to 1:3.3. Doping of CdS with Zn2+ and Cu2+ is found to enhance the PL intensity. PL band shows blue-shift and red-shift on doping with Zn2+ and Cu2+, respectively. UV and PL spectral features of the CdS/Au hybrid nanoparticles obtained by a physical mixing of CdS and Au nanoclusters in various volume ratios is also discussed. Au red-shifts and rapidly quenches the PL of CdS. An additional low energy band approximately 650 nm is observed in the UV visible spectrum of the hybrid nanoparticles.  相似文献   

9.
Short-range order sodium dodecyl sulfate (SDS)-bound micelles and long-range order poly(vinylpyrrolidone) (PVP)?CSDS supramolecular assemblies in PVP?CSDS aqueous solution illustrate the potential template application in directing hierarchical assembly of inorganic nanostructure. In this paper, ginger-like Au nanobranches with equivalent circle diameter around 50?nm were prepared in PVP?CSDS aqueous solution under microwave irradiation through a one-pot, facile, rapid, and morphology-controlled synthesis route. Based on the experimental results, the possible growth mechanism of the ginger-like gold nanobranches is inferred to be a template-mediated and microwave-assisted hierarchical assembly via the unique co-effect of PVP?CSDS soft template and microwave irradiation. At first, the precursors AuCl 4 ? surrounding the SDS-bound micelles were rapidly reduced to Au0 by sodium citrate assisted by microwave irradiation and simultaneously assembled into abundant Au nanocrystals with diameters around 10?nm according to the bound micelle templates. And then several tiny Au nanocrystals linked by PVP chains within a limited space were instantly mediated by the long-range order PVP?CSDS supramolecular assemblies to fabricate into polycrystal ginger-like Au nanobranches. X-ray diffraction (XRD) pattern indicates that the Au nanobranches are face-centered cubic phase, which is verified by high-resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) pattern.  相似文献   

10.
以聚乙烯吡咯烷酮(poly(vinylpyrrolidone), PVP)为保护剂, 硼氢化钠为还原剂, 合成了尺寸为(1.9±0.4) nm的单分散金胶体, 再以其作为一级晶种, 并分别用抗坏血酸和PVP为还原剂和保护剂, 通过改变各步晶种尺寸和氯金酸与晶种的摩尔比分步逐级合成了尺寸为3.2、4.7、6.3、8.0、10.3、14.0 nm的系列金纳米颗粒. 以LaMer模型为基础, 对分步晶种生长过程中影响金胶体产物尺寸分布(单分散性)的主要因素进行了讨论. 缓慢加入抗坏血酸并降低氯金酸对晶种的相对量对于单分散金纳米颗粒的控制合成有决定性作用. 快速加入抗坏血酸会因二次成核而导致金颗粒尺寸分布范围变宽.  相似文献   

11.
Infrared reflection absorption spectroscopy (IRAS) has been used to study CO adsorption on Au clusters ranging in size from 1.8 to 3.1 nm, supported on TiO(2). The adsorbed CO vibrational frequency blue-shifts slightly (approximately 4 cm(-)(1)) compared to that adsorbed on bulk Au, whereas the heats of adsorption (-DeltaH(ads)) increase sharply with decreasing cluster size, from 12.5 to 18.3 kcal/mol.  相似文献   

12.
Reactions of MS4(2-) (M = Mo, W) with M'(PCy3)X (M'=Ag/Au, X= ClO4/Cl) and [Cu2(dcpm)2(MeCN)2](ClO4)2 (dcpm = bis(dicyclohexylphosphino)methane) afforded heterometallic sulfido clusters [M'2(PCy3)2(MS4)] (M=Mo, M'=Au: 2; M=W, M'=Ag: 3, Au: 4) and [Cu4(dcpm)4(MS4)](ClO4)2 (M=Mo: 5 x (ClO4)2, W: 6 x (ClO4)2), all of which, except 4, have been characterized by X-ray structure determination. Clusters 5 x(ClO4)2 and 6 x (ClO4)2 feature unusual 16-membered [Cu4P5C4] metallamacrocycles formed on the respective tetrathiometalate anion templates and have unusually long Cu-S bonds and Cu...M distances for metal sulfur clusters that contain a saddle-shaped [Cu4MS4] core. Low-energy absorption bands are observed in their electronic spectra at approximately 562 and 467 nm, respectively, assignable to MMCT transitions; quasireversible reduction waves are observed with E(1/2) = -1.43 (52+) and -1.78 V (62+) versus FeCp2(0/+); and they are emissive either in the solid state or in solution. The emission of 6(2+) can be quenched by both electron acceptors, such as methylviologen, or electron donors, such as aromatic amines, with the excited state reduction potential E(62+*/6+) estimated to be approximately 1.13V versus a normal hydrogen electrode.  相似文献   

13.
We previously reported that a porphyrin-cored tetradentate passivant, which has two disulfide straps over one face of the porphyrin plane, can produce monolayer-protected gold nanoparticles, 2-4 nm in size, by the one-pot reduction of HAuCl(4) in DMF. The resulting nanoparticles are smaller than those prepared using the same S/Au molar ratio of a monodentate passivant. To examine the formation mechanism of small gold nanoparticles, the formation of gold nanoparticles in the presence of porphyrin-cored tetradentate passivants or a structurally related monodentate passivant was studied by time-resolved quick X-ray absorption fine structure spectroscopy. The results demonstrated that all of Au ions in solution are reduced to compose small Au clusters, i.e. nuclei, just after the NaBH(4) reduction of HAuCl(4) in both cases, but their size varied with the initial S/Au molar ratios and structure of the passivants. Thus, the size of Au nuclei was kinetically controlled by the passivants. Interestingly, the porphyrin-cored tetradentate passivant could stabilize smaller gold nanoparticles, 2-4 nm in size, but it was less efficient in trapping the Au nuclei formed at a very early stage, in comparison to the monodentate passivant.  相似文献   

14.
在水溶液中,以PAMAM树形分子为模板,乙醇为还原剂,制备了树形分子包裹的金纳米颗粒,其水溶性好,可以稳定放置1年以上;通过控制Au3+与PAMAM树形分子的摩尔比,可以得到粒径可控的金纳米颗粒,其粒径范围为1~4nm,分别在385和402nm处出现强的共振瑞利光散射峰和荧光峰.室温下,荧光量子产率达到10%以上,比其它文献报道的金纳米颗粒的荧光量子产率高2个数量级以上,这一特性使其在潜指纹识别、光催化等方面具有很大的应用潜力.  相似文献   

15.
A study is presented of the preparation of gold nanoparticles incorporated into biodegradable micelles. Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) copolymer was synthesized by ring-opening polymerization, and the hydroxyl end group of the PCL block was modified with thioctic acid using dicyclohexyl carbodiimide as the coupling reagent. The PEO-b-PCL-thioctate ester (TE) thus obtained was used in a later step to form monolayer protected gold nanoparticles via the thioctate spacer. Gold nanoparticles stabilized with the PEO-b-PCL block (named Au/Block (x/y), where x/y is the mole feed ratio between HAuCl4 and PEO-b-PCL-TE) were prepared and analyzed. Au/Block (1/1), Au/Block (2/1), and Au/Block (3/1) nanoparticles were found to form stable dispersions in the organic solvents commonly used to dissolve the unlabeled block copolymer. The average diameter of the nanoparticles was determined by transmission electron microscopy (TEM) and found to be 6+/-2 nm. Au/Block (4/1) nanoparticle dispersions in organic solvents, on the other hand, were not stable and produced large gold clusters (50-100 nm). Cluster formation was attributed to the low grafting density of the block copolymer, which facilitates agglomeration. For Au/Block (12/1), along the same trend, only an insoluble product was isolated. Micelles in water were prepared by the slow addition of the dilute Au/Block solution in dimethylformamide into a large excess of water with vigorous stirring. Au/Block (1/1) and Au/Block (2/1) formed nanosized structures of 5-7 nm. TEM images of stained Au/Block (1/1) micelles, made in water, clearly showed the formation of core-shell structures. Au/Block (3/1) micelles, on the other hand, were not stable and large agglomerates a few microns in size were observed. The study focuses on the synthesis, characterization, and aggregation behavior of gold-loaded PEO-b-PCL block copolymer micelles, a potential system for drug delivery in conjunction with tissue and subcellular localization studies.  相似文献   

16.
Gold nanorods were prepared in high yields by using a one-step seed-mediated process in aqueous cetyltripropylammonium bromide (CTPAB) and cetyltributylammonium bromide (CTBAB) solutions in the presence of silver nitrate. The diameters of the nanorods range from 3 to 11 nm, their lengths are in the range of 15 to 350 nm, and their aspect ratios are in the range of 2 to 70. The diameters of the Au nanorods obtained from one growth batch in CTPAB solutions decrease as their lengths increase, and their volumes decrease as the aspect ratios increase. The diameters of the Au nanorods obtained from one growth batch in CTBAB solutions first decrease and then slightly increase as their lengths increase, and their volumes increase as the aspect ratios increase. These Au nanorods are single-crystalline and are seen to be oriented in either the [100] or [110] direction under transmission electron microscopy imaging, irrespective of their sizes. To the best of our knowledge, this is the first report of the preparation by using wet-chemistry methods of single-crystalline Au nanorods with aspect ratios larger than 15.  相似文献   

17.
采用沉积-沉淀法再辅以微波干燥和焙烧制备了金属氧化物负载的金簇合物和小的金纳米粒子.干燥方法影响了金颗粒尺寸.在炉干燥过程中Au(III)因部分还原而致使Au聚集.相反,在微波干燥下,因快速和加热均一而使Au(III)得以保持,在Al2O3上负载的Au颗粒尺寸小至1.4 nm.该法可用于具有几种不同微波吸收效率的金属氧化物载体,如MnO2,Al2O3和TiO2.这些催化剂在低温CO氧化和硫化物选择有氧氧化反应中的催化活性比常规方法制备的更高.  相似文献   

18.
采用四氢硼钠制备了较稳定的纳米银,并用凝血酶(TB)适体修饰纳米银制各了识别凝血酶的适体纳米银探针.在pH 7.0的Tris-HCl缓冲溶液及KCl存在下,适体纳米银探针与凝血酶特异结合生成G-四分体和纳米银聚集体,导致体系在480 nm处的共振散射峰增强.随着凝血酶浓度的增大,生成的纳米银聚集体越多,共振散射强度线性...  相似文献   

19.
The dispersions of polymer-protected gold/platinum bimetallic clusters were easily and reproducibly prepared by refluxing the mixed solutions of tetrachloroaureic(III) acid and hexachloroplatinic(IV) acid in ethanol/water (1/1) at 90 ∼ 95 °C for 2 h in the presence of a protective polymer such as poly(N-vinyl-2-pyrrolidone) (PVP). The gold/platinum bimetallic clusters thus obtained were very small, well dispersed and very stable. The UV-Vis spectra and the transmission electron micrographs have indicated that each bimetallic particle has an alloy structure consisting of both gold and platinum atoms, and that the surface of the cluster particle is rich in platinum atoms and the inner core in gold atoms. The gold/platinum bimetallic clusters were used as the multi-electron redox catalysts for visible light-induced hydrogen evolution from water. The rate of hydrogen evolution depended on the mole ratio of the gold/platinum bimetallic clusters. The bimetallic clusters at the mole ratio of Au/Pt = 2/3 were the most active catalyst. The in-situ UV-Vis spectra during the reaction have indicated that the order of the aggregation in the two kinds of metal atoms is very important for structure determination of the Au/Pt bimetallic clusters. The protective polymer PVP plays a role not only in protecting hydrophobic colloidal particles in an aqueous solution, but also in determining the metal composition of the cluster surface.  相似文献   

20.
With a variety of surface probe techniques, we investigated low-temperature decomposition of methanol on Au nanoclusters formed by vapor deposition onto an ordered Al(2)O(3)/NiAl(100) thin film. Upon adsorption of methanol on the Au clusters (with mean diameter 1.5-3.8 nm and height 0.45-0.85 nm) at 110 K, some of the adsorbed methanol dehydrogenates directly into carbon monoxide (CO); the produced hydrogen atoms (H) begin to desorb near 125 K whereas most of the CO desorbs above 240 K. The reaction exhibits a significant dependence on the Au coverage: the produced CO increases in quantity with the Au coverage, reaches a maximum at about 1.0-1.5 ML Au, whereas decreases with further increase of the Au coverage. The coverage-dependence is rationalized partly by an altered number of reactive sites associated with low-coordinated Au in the clusters. At least two kinds of reactive sites for the low-temperature decomposition are distinguished through distinct C-O stretching frequencies (2050 cm(-1) and 2092 cm(-1)) while the produced CO co-adsorbs with H and methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号