首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, natural frequencies characteristics of a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on three-dimensional equations of elasticity is considered. The axisymmetric conditions are assumed for the 2D-FGM cylinder. The material properties of the cylinder are varied in the radial and axial directions with power law functions. Effects of volume fraction distribution and FGM configuration on the natural frequencies of a simply supported cylinder are analyzed. Also, the effects of length and thickness of the cylinder are considered for different material distribution profiles. Three-dimensional equations of motion are used and the eigen value problem is developed based on direct variational method. Finite element method with graded material characteristics within each element of the structure is used for solution. The study shows that the 2D-FGM cylinder exhibit interesting frequency characteristics when the constituent volume fractions and its configuration are varied.  相似文献   

2.
An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear deformation theory is used to model the electromechanical system. Nonlinear equations of motion are derived by considering the von Karman nonlinear strain-displacement relations using Hamilton’s principle. The piezoelectric layers on the inner and outer surfaces of the core can be considered as a sensor and an actuator for controlling characteristic vibration of the system. The equations of motion are derived as partial differential equations and then discretized by the Navier method. Numerical simulation is performed to investigate the effect of different parameters of material and geometry on characteristic vibration of the cylinder. The results of this study show that the natural frequency of the system decreases by increasing the non-homogeneous index of FGP layers and decreases by increasing the non-homogeneous index of the functionally graded core. Furthermore, it is concluded that by increasing the ratio of core thickness to cylinder length, the natural frequencies of the cylinder increase considerably.  相似文献   

3.
In this paper a thick short length hollow cylinder made of functionally graded materials (FGMs) under internal impact loading is considered. The inner surface of the cylinder is pure ceramic, the outer surface is pure metal, and the material composition varies continuously along its thickness. Finite Element Method based on Rayleigh-Ritz energy formulation has been applied to study the propagation of elastic waves in FG thick hollow cylinders. The Newmark direct integration method is applied to solve the time dependent equations. The time histories of displacements, stresses, wave propagation in two directions and velocities of radial stress wave propagation for various values of volume fraction exponent have been investigated. Also by using fast Fourier transform, the first natural frequencies for FG cylinders with simply-simply and clamped-clamped ends conditions are illustrated. The model has been compared with result of a plane strain FG thick hollow cylinder which is subjected to an internal impact loading, and it shows very good agreement.  相似文献   

4.
In this paper, the wave propagation and dynamic response of the rectangular FGM plates with completed clamped supports under impulse load are analyzed. The effective material properties of functionally graded materials (FGMs) for the plate are assumed to vary continuously through the plate thickness and be distributed according to a volume fraction power law along the plate thickness. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived by using the Hamilton’s principle. A complete discussion of dispersion of the FGM plates is given. Using the dispersion relation and integral transforms, exact integral solutions for the FGM plates under impulse load are obtained. The influence of volume fraction distributions on wave propagation and dynamic response of the FGM plates is analyzed.  相似文献   

5.
The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of various parameters on the natural frequencies.  相似文献   

6.
In this paper a thick hollow cylinder with finite length made of two dimensional functionally graded material (2D-FGM) subjected to transient thermal boundary conditions is considered. The volume fraction distribution of materials, geometry and thermal boundary conditions are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure and the Crank–Nicolson finite difference method is implemented to solve time dependent equations of the heat transfer problem. Two-dimensional heat conduction in the cylinder is considered and variation of temperature with time as well as temperature distribution through the cylinder are investigated. Effects of variation of material distribution in two radial and axial directions on the temperature distribution and time response are studied. The achieved results show that using two-dimensional FGM leads to a more flexible design so that transient temperature, maximum amplitude and uniformity of temperature distributions can be modified to achieve required specifications by selecting a suitable material distribution profile in two directions.  相似文献   

7.
基于轴对称平面应变问题的运动方程及弹性梯度材料的应力和位移关系,通过将圆筒分层使材料性质离散为分段常数函数,同时在时域内应用有限差分格式,求得了材料性质沿径向梯度变化的圆筒弹性动力学解。本文解不仅适合任意梯度的弹性圆筒,而且容易满足多种形式的初始条件和边界条件。通过对材料性质沿径向为连续函数分布和分段函数分布的梯度圆筒数值分析,并与已有文献结果比较,得出本文解与已有文献的解吻合较好,验证了本文解的正确性和有效性。对材料性质为分段函数的三层组合圆筒分析发现,中间功能梯度层的指数分布因子对圆筒的径向位移和应力随时间变化都会产生显著影响。  相似文献   

8.
The dynamic propagation of an interface crack between two dissimilar functionally graded piezoelectric material (FGPM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGPM layers vary continuously along the thickness. The properties of the FGPM layers vary differently and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to two sets of dual integral equations, which are then expressed to the Fredholm integral equations of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show the effects on the electric loading, gradient of material properties, crack moving velocity, and thickness of layers. Followings are helpful to increase of the resistance of the interface crack propagation of FGPM: (a) certain direction and magnitude of the electric loading; (b) increase of the gradient of material properties; (c) increase of the material properties from the interface to the upper and lower free surface; (d) increase of the thickness of FGPM layer. The DERR increases or decreases with increase of the crack moving velocity.  相似文献   

9.
The free vibration analysis of a rotating cylindrical shell with an analytical method is investigated. The shell is considered as a sandwich structure, where the middle layer is a functionally graded material(FGM) shell, and it is surrounded by two piezoelectric layers. Considering piezoelectric materials to be functionally graded(FG),the material properties vary along the thickness direction as one innovation of this study.Applying the first-order shear deformation theory(FSDT), the equations of motion of this electromechanical system are derived as the partial differential equations(PDEs) using Hamilton's principle. Then, the Galerkin procedure is used to discretize the governing equations, and the present results are compared with the previously published results for both isotropic and FGM shells to verify the analytical method. Finally, the effects of FGM and functionally graded piezoelectric material(FGPM) properties as well as the thickness ratio and the axial and circumferential wave numbers on the natural frequencies are studied. Moreover, the Campbell diagram is plotted and discussed through the governing equations. The present results show that increasing the non-homogeneous index of the FGM decreases the natural frequencies on the contrary of the effect of non-homogeneous index of the FGPM.  相似文献   

10.
界面特性对功能梯度智能梁静动态响应的影响研究   总被引:2,自引:0,他引:2  
采用状态空间法分析了两边简支的含压电夹层的功能梯度梁的静力弯曲和自由振动问题.为了考虑中间压电层与上、下功能梯度层之间的粘结效果,采用线性弹簧模型以模拟界面性能.假设上下功能梯度层的材料参数沿厚度连续变化,而压电层则是均匀材料,并且它们都是正交各向异性的.由于功能梯度梁的不均匀性使得直接求解比较困难,文中用层合模型来进行近似.数值算例中,分别考虑了压电层用于传感器或作动器的情形,分析了粘结界面完美程度对组合梁静力弯曲和自由振动频率的影响.  相似文献   

11.
Elastic analysis of a functionally graded thick-walled cylindrical pressure vessel is analytically studied in the present research. Gradation is considered for all mechanical properties along the thickness direction based on a power function. The constitutive relations are developed in the general cylindrical coordinate system for an axisymmetric pressurized cylinder. For simulation of these two deformation components, first order shear deformation theory is considered. The FG cylinder is subjected to longitudinally non-uniform pressure along the length of the cylinder. The present problem is applicable for simulation of non-uniform pressurized cylinder by fluids or gases.  相似文献   

12.
基于一阶剪切变形理论和移动最小二乘近似研究Winkler弹性地基上加肋功能梯度板的固有频率。假设功能梯度板的材料性质沿厚度方向按幂函数连续变化,基于物理中面和移动最小二乘近似分别推导功能梯度板和肋条的动能和势能,再通过引入位移协调条件,建立板和肋条节点参数转换关系,叠加两者的总能量,然后利用Hamilton原理推导加肋功能梯度板自由振动控制方程。采用完全转换法施加边界条件。通过将本文的计算结果与有限元以及文献的结果对比,验证方法的收敛性以及准确性。  相似文献   

13.
利用微分方程的级数求解方法,分析了两端简支的有限长功能梯度圆筒的轴对称稳态热弹性问题,推导出了稳态温度场与应力场的解析解。分析中采用指数函数模型来描述FGM圆筒中材料性能在厚度方向的连续变化,同时忽略温度对材料性能的影响。另外,论文以金属钼和多铝红柱石制成的功能梯度圆筒为例,给出了稳态温度场和应力场的数值结果。  相似文献   

14.
In this paper transient thermal stresses in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) based on classical theory of thermoelasticity are considered. The volume fraction distribution of materials, geometry and thermal load are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure. Temperature, displacements and stress distributions through the cylinder at different times are investigated. Also the effects of variation of material distribution in two radial and axial directions on the thermal stress distribution and time responses are studied. The achieved results show that using 2D-FGM leads to a more flexible design so that time responses of structure, maximum amplitude of stresses and uniformity of stress distributions can be modified to a required manner by selecting suitable material distribution profiles in two directions.  相似文献   

15.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

16.
In this article, static analysis of functionally graded, anisotropic and linear magneto-electro-elastic plates have been carried out by semi-analytical finite element method. A series solution is assumed in the plane of the plate and finite element procedure is adopted across the thickness of the plate such a way that the three-dimensional character of the solution is preserved. The finite element model is derived based on constitutive equation of piezomagnetic material accounting for coupling between elasticity, electric and magnetic effect. The present finite element is modeled with displacement components, electric potential and magnetic potential as nodal degree of freedom. The other fields are calculated by post-computation through constitutive equation. The functionally graded material is assumed to be exponential in the thickness direction. The numerical results obtained by the present model are in good agreement with available functionally graded three-dimensional exact benchmark solutions given by Pan and Han [Pan, E., Han, F., in press. Green’s function for transversely isotropic piezoelectric functionally graded multilayered half spaces. Int. J. Solids Struct.]. Numerical study includes the influence of the different exponential factor, magneto-electro-elastic properties and effect of mechanical and electric type of loading on induced magneto-electro-elastic fields. In addition further study has been carried out on non-homogeneous transversely isotropic FGM magneto-electro-elastic plate available in the literature [Chen, W.Q., Lee, K.Y., Ding, H.J., 2005. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates].  相似文献   

17.
梯度材料层状结构中的Love波   总被引:13,自引:3,他引:10  
研究了功能梯度材料层状结构中Love波的传播特性对覆盖层中的剪切弹性模量沿厚度方向为指数函数和幂函数变化的两种函数形式,利用WKB方法分别求得了波传播问题的近似解析解,通过计算分析,得到了Love波在功能梯度材料层中传播的一些规律.  相似文献   

18.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

19.
This paper focuses on non-Fourier hyperbolic heat conduction analysis for heterogeneous hollow cylinders and spheres made of functionally graded material (FGM). All the material properties vary exponentially across the thickness, except for the thermal relaxation parameter which is taken to be constant. The cylinder and sphere are considered to be cylindrically and spherically symmetric, respectively, leading to one-dimensional heat conduction problems. The problems are solved analytically in the Laplace domain, and the results obtained are transformed to the real-time space using the modified Durbin’s numerical inversion method. The transient responses of temperature and heat flux are investigated for different inhomogeneity parameters and relative temperature change values. The comparisons of temperature distribution and heat flux between various time and material properties are presented in the form of graphs.  相似文献   

20.
In the present study, a vibration frequency analysis of a bi-layered cylindrical shell composed of two independent functionally graded layers is presented. The thickness of the shell layers is assumed to be equal and constant. Material properties of the constituents of bi-layered functionally graded cylindrical shell are assumed to vary smoothly and continuously through the thickness of the layers of the shell and are controlled by volume fraction power law distribution. The expressions for strain–displacement and curvature–displacement relationships are utilized from Love’s first approximation linear thin shell theory. The versatile Rayleigh–Ritz approach is employed to formulate the frequency equations in the form of eigenvalue problem. Influence of material distribution in the two functionally graded layers of the cylindrical shells is investigated on shell natural frequencies for various shell parameters with simply supported end conditions. To check the validity, accuracy and efficiency of the present methodology, results obtained are compared with those available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号