首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the preceding paper it was shown that the 266 nm photodissociation of HN3 gives rise to NH fragments exclusively in the vibrationless a(1Δ) state with about 900 cm?1 of rotational energy. These fragments collisionally react with HN3 to produce NH2(2A1) in a chemiluminescent reaction. The time resolved chemiluminescence emission is used to determine the reaction rate for NH(1Δ) + HN3 → NH2(2A1) + N3(2Πg). The reaction rates of NH(1Δ) with several other species, HCl, CH4, C2H4, C3H6 and C6H12 are reported. Possible mechanisms for these reactions are considered. Condensed phase experiments are reported describing the addition reaction of NH(1Δ) with cyclohexane.  相似文献   

2.
Strongly enhanced N2 first positive emission N2(B 3Πg → A 3Σ+u) has been observed on addition of N atoms into a flowing mixture of Cl and HN3. The dependence of the emission intensity on N atom concentration gave a rate constant for the reaction N + N3 → N2(B 3Πg) + N2(X 1Σ+g) of i(1.6 ± 1.1) × 10?11 cm3 molecule?1 s?1. That for the reaction Cl + HN3 → HCl + N3 is (8.9 ± 1.0) × 10?13 cm3 molecule?1 s?1 from the decay of the emission. Comparison of the emission intensity in ClHN3 with that in ClHN3N gave the rate constant of the reaction N3 + N3 → N2(B 3Πg) + 2N2(X 1Σ+g) as 1.4 × 10?12 cm3 molecule?1 s?1 on the assumption that N + N3 yields only N2(B 3Πg) + N2(X 1Σ+g).  相似文献   

3.
Electronically excited NF in both the a1Δ and b 1Σ+ states hasbeen observed from the reaction of fluorine atoms with HN3. The results suggest that fluorine atoms first abstract the hydrogen atom from HN3, then react with the remaining N3 to form NF(a1Δ). NF*(b1Σ+) is produced by a subsequent energy pooling reaction between NF(a1Δ) and vibrationally excited HF. The rate of the F + N3 reaction is estimated to be ≈ 1012 and 3 mole?1 s?1.  相似文献   

4.
The flash photolysis of HN3 was studied by coordinated time-resolved spectroscopic measurements of HN3 NH(a1Δ), NH(X3Σ), NH(c1π), NH(A3π), NH2, and N3 following flash photolysis of mixtures of HN3 with argon or helium. The primary photolysis is complex, but when the wavelength distribution of the flash is limited to values greater than about 200 nm, the major reactive product is NH(1Δ), or states which quickly decay to NH(1Δ). Disappearance of NH(1Δ) occurs predominantly by the process The process has little, if any, energy of activation, and no detectable dependence on the pressure of inert gas below 1 atm. The rate of formation of NH2 in its ground vibrational state depends on the inert gas pressure in a way that can be accounted for by vibrational relaxation from initial excited vibrational states. The total amount of NH2 is roughly comparable with the amount of HN3 decomposed by primary photolysis. The observed N3 can be attributed to the NH(1Δ) + HN3 reaction, although a smaller amount could also be formed by primary photolysis. The value of k2 is revised upward from the value given in a preliminary report on the basis of a more careful consideration of the effects of Beer's law failure in absorption measurements involving narrow spectral lines.  相似文献   

5.
Chemiluminescence from the a1Δ and b1Σ+ excited electronic states of nitrogen halide diatomics is observed when HN3 is allowed to react with mixtures of halogen atoms in a discharge-flow apparatus. Excited NF (a1Δ) is produced by the F + HN3 reaction, and NCl (a1Δ, b1Σ+) and NBr (a1Δ, b1Σ+) are produced by the F, Cl, + HN3 and F, Br + HN3 reactions, respectively. In the low-density limit, the yield of NF(a1Δ) was found to be near unity. The yields of the b1Σ+ states of NCl and NBr were determined to have a lower limit of ca. 10%. A number of results from these experiments, including direct observation of N3 radicals in the flow, support a hypothetical mechanism in which N3 acts as an intermediate. A second possible mechanism proceeding via an HNF intermediate cannot be ruled out.  相似文献   

6.
The production of both the b1Σ+ and a1Δ states of NCl has been observed from the reaction of HN3 with flowing streams of Cl and F atoms. The results suggest that a two-step reaction sequence is responsible for the production of excited NCl, as follows: The rate contant (all products) for the first step is k(F + HN3) > 1 × 10?11 cm3/molecule sec. Comparison of this value to results obtained in a previous study of the F + HN3 system yields a value k(F + N3) = 2 × 10?12 cm3/molecule sec. The rate constant for the reaction of chlorine atoms with HN3 was determined to be k(Cl + HN3) 1 × 10?12 cm3/molecule sec. The difference between the Cl + HN3 and F + HN3 rates is interpreted in terms of an addition–elimination mechanism.  相似文献   

7.
The rate of the reaction O2(1Δg + O3 → 2O2(3Σ g) + O(3P) was measured in a static reactor between 296 and 360°K. The decay of O2(1Δg) was determined from the emission of O2(1Σ+g) at 7620 Å. The rate constant is 6.0 × 10−11 exp (−5670/RT) cm3 molecule−1 sec−1. The reaction of O(3P) with ozone is found to produce O2(1Σ+g) with approximately 0.01% efficiency.  相似文献   

8.
The reaction of atomic hydrogen with O2(1Δg) has been investigated as a function of temperature, using a fast discharge-flow apparatus equipped for EPR detection of free radical species. The rate constant for the overall reaction was measured as (1.46 ± 0.49) × 10?11 exp(-4000 ± 200 cal/mol/RT) cm3/s. Evidence is presented which suggests that the reaction occurs principally via abstraction, H + O2(1Δg) → OH + O, rather than via physical quenching, H + O2(1Δg) → H + O2(X3Σg?).  相似文献   

9.
The 300 K reactions of O2 with C2(X 1Σ+g), C2(a 3 Πu), C3(X? 1Σ+g) and CN(X 2Σ+), which are generated via IR multiple photon dissociation (MPD), are reported. From the spectrally resolved chemiluminescence produced via the IR MPD of C2H3CN in the presence of O2, CO molecules in the a 3Σ+, d 3Δi, and e 3Σ? states were identified, as well as CH(A 2Δ) and CN(B 2Σ+) radicals. Observation of time resolved chemiluminescence reveals that the electronically excited CO molecules are formed via the single-step reactions C2(X 1Σ+g, a 3Πu) + O2 → CO(X 1Σ+ + CO(T), where T denotes are electronically excited triplet state of CO. The rate coefficients for the removal of C2(X 1Σ+g) and C2(a 3Πu) by O2 were determined both from laser induced fluorescence of C2(X 1Σ+g) and C2(a 3Πu), and from the time resolved chemiluminescence from excited CO molecules, and are both (3.0 ± 0.2)10?12 cm3 molec?1 s?1. The rate coefficient of the reaction of C3 with O2, which was determined using the IR MPD of allene as the source of C3 molecules, is <2 × 10?14 cm3 molec?1 s?1. In addition, we find that rate coefficients for C3 reactions with N2, NO, CH4, and C3H6 are all < × 10?14 cm3 molec?1 s?1. Excited CH molecules are produced in a reaction which proceeds with a rate coefficient of (2.6 ± 0.2)10?11 cm3 molec?1 s?1. Possible reactions which may be the source of these radicals are discussed. The reaction of CN with O2 produces NCO in vibrationally excited states. Radiative lifetime of the ā 2Σ state of NCo and the ā 1Πu(000) state of C3 are reported.  相似文献   

10.
Measurements of the quantum yield of self-sensitized 1,3-diphenylisobenzofuran peroxidation as a function of dissolved oxygen of added azulene concentrations indicate that oxygen quenching of the sensitizer singlet state produces both triplet and ground states of the sensitizer in addition to O2(1Δg) and O2(3Σ?g). This partitioning of quenching products may be due to the competitive relaxation of the initially formed complex (oxciplex), or to sequential relaxation of different oxciplex states in which symmetry and spin barriers are negotiated by complex dissociation and re-encounter of the solute pair in the required configuration. The latter interpretation provides re-encounter probabilities for the processes M(T1) + O2(1Δg) → M(T1) + O2(3Σ?g) and M(T1) + O2(3Σ?g) → M(So) + O2(1Δg) from which estimated rate constants are compatible with theoretical expectation.  相似文献   

11.
The diffusion coefficient of O*2(1Δg) in O2(3Σ?g) has been measured as a function of pressure, D* = 0.201 ± 0.005 cm2 s?1 at 1 atmosphere and 298 K.  相似文献   

12.
Relaxation rates for O2(1Σg+) by nonradiative pathways have been determined using the fast-flow technique. O2(1Σg+) is formed from O2(1Δg) by an energy pooling process. O2(1Δg) is generated by passing purified oxygen through a microwave discharge. Oxygen atoms are removed by distilling mercury vapor through the discharge zone. It has been observed that the wall loss rate for O2(1Σg+) decreases with increasing pressure of oxygen and thus appears to be diffusion controlled. Quenching rate constants for O2, N2, and He have been determined and found to be (1.5 ± 0.1) × 104, (1.0 ± 0.05) × 106 and (1.2 ± 0.1) × 105 l./mol·sec, respectively.  相似文献   

13.
The generation of metastable O2(1Σg+) and O2(1Δg) in the H + O2 system of reactions was studied by the flow discharge chemiluminescence detection method. In addition to the O2(1Σg+) and O2(1Δg) emissions, strong OH(v = 2) → OH(v = 0), OH(v = 3) → OH(v = 1), HO2(2A000) → HO2(2A000), HO2(2A001) → HO2(2A000), and H O2(2A200) → HO2(2A000) emissions were detected in the H + O2 system. The rate constants for the quenching of O2(1Σg+) by H and H2 were determined to be (5.1 ± 1.4) × 10?13 and (7.1 ± 0.1) × 10?13 cm3 s?1, respectively. An upper limit for the branching ratio to produce O2(1Σg+) by the H + HO2 reaction was calculated to be 2.1%. The contributions from other reactions producing singlet oxygen were investigated.  相似文献   

14.
The reactions of CS(X 1Σ+), CS2(X 1Σ+g) and OCS(X 1Σ+) with O(3P) were studied at 298 K by means of a CO laser resonance absorption technique. The CO(ν) population distribution produced from the reaction O(3P) + CS(X 1Σ+) studied in a quartz flash photolysis tube (λ>/ 200 nm) is similar to distributions observed previously for ν> 7. For ν < 7 an energetically colder vibrational population was observed which is attributed to the reaction of O(3P) atoms with undissociated CS2(X 1Σ+g). Subsequent experiments carried out in a Pyrex flash photolysis tube (λ>/ 300 nm) in which the O(3P) + CS2(X 1Σ+g) reaction is the only one which can occur confirmed that the colder population observed is attributable to this process. The branching ratio for the reaction channel O(3P) + CS2(X 1Σ+g) → CO(X 1Σ+) + S2(3Σ?g) has been measured. We find that 1.4 ± 0.2% of the O + CS2 reaction proceeds through this channel, and that the rate constant for this reaction channel is, k = 3.5 (±0.5) × 1010 cm3/mole s. Isotope labeled experiments using 18O atoms show that the O(3P) + OCS(X 1Σ+) reaction takes place by a direct stripping mechanism, wherein CO(ν) is produced exclusively from the parent OCS molecule. The CO(ν) formed in this reaction carries about 9% of the total available energy.  相似文献   

15.
High-resolution spectra of the NO2 continuum emission produced from the reaction NO + O3 → NO2 + O2 have been investigated to detect any possible emission from O2(1Δg) at 1270 nm or O2(1Σ+g) at 762 nm. The photolysis of O3/O2 mixtures at 253.7 nm, which produces both states of O2 with known quantum efficiency, has been used as an internal standard. From the results it is concluded that less than 1/300 and 1/200 of the NO + O3 reactive collissions result in production of O2(1Δg) or O2(1Σ+g), respectively, at room temperature.  相似文献   

16.
Chemiluminescence is observed from DN3 at pressures below 100 mtorr following irradiation with the focused output of a CO2 TEA laser. Emission is attributed to ND2(2AI) formed in the reaction ND(a1Δ) + DN3 → ND2 (2A1) + N3. The ND(a1Δ) is produced in the primary photolysis. Time resolved studies of the fluorescence permit determination of the rate constant for the chemiluminescent reaction (2.09 ± 0.31 μs?1 torr?1). Multiphoton dissociation of HN3 by use of a laser wavelength coincident with a hot band absorption is also demonstrated.  相似文献   

17.
Molecular N2 emission, observed from an Ar(3Po, 2) and Xe(3P2) + N2 flowing afterglow apparatus, indicates that the energy pooling reaction by 2N2(A 3Σ+u) generates the emission from the Herman infrared system, which is an unassigned nitrogen band system. A lower limit to the formation rate constant for the upper state of the Herman infrared system was found to be 2.5 × 10-11 cm3 molecule?1 s?1. The information presented here may help in the identification of the upper and lower states of the emission system. The 2N2(A) energy pooling reaction also forms N2(B3 Πg, v? 8) but a rate constant cannot be assigned from the present data.  相似文献   

18.
《Chemical physics》1986,104(1):161-167
6Li2 13Δg(F1) → b3Πu(F1v = 0–11) rotationally resolved fluorescence spectra are recorded following perturbation-facilitated optical—optical double resonance excitation of 13Δg via spin—orbit mixed A1Σ+u ∼ b3Πu(F1e) intermediate levels. The f-symmetry Λ-components of b3Πu(F1) are broadened above the 0.05 cm−1 detection threshold owing to predissociation by the vibrational continuum of the a3Σ+u state. The observed v = 0–11, N = 31f level widths were used to determine the potential energy curve for the Li2 a3Σ+u state in the region 2.35 < R < 2.60 Å and 11200 < E < 14900 cm−1 (relative to E = 0 at the minimum of X1Σ+g). The a3Σ+u ∼ b3Πu curve crossing is at R = 2.57 Å and E = 11246 cm−1 and the electronic part of the − BN·LL-uncoupling matrix element is 〈b Π¦L+ ¦aΣ〉 = 1.216H at an R-centroid Rvbϵa = 2.61Å.  相似文献   

19.
The reaction of O2(1Δg) with HO2(X?) was studied in an isothermal flow reactor in the pressure range 7?p? 10.7 mbar at temperatures between 299?T? 423 K. H-atom production was observed in the reaction O2(1Δg) + HO22A′) - H(2S)+ 2O2 (3Σg?). The rate of this reaction (k1) is estimated to be k1 = (1 ± 0.5) × 1014 CM3 Mol?1 s?1. The implications of this reaction to recent determinations of the rate of the reaction H + O2(1Δg) are discussed.  相似文献   

20.
A measurement of the electronic transition moment variation for the N2(a'1Σ?uX1Σ+g) band system has allowed a reassessment of the radiative lifetime of N2(a′). Relaxation to N2(a′,υ=0) is established as the major channel for quenching of N2(a1Πg, υ = 0) molecules by Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号