首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spreading of a thin liquid drop under gravity and small surfacetension on a slowly dropping flat plane is investigated. The initialslope of the flat plane is assumed to be small. By considering astraightforward forward perturbation, the fourth-order nonlinear partialdifferential equation modelling the spreading of the liquid drop reducesto a second-order nonlinear partial differential equation. Thisresulting equation is solved using the classical Lie group method. Thegroup invariant solution is found to model the long time behaviour ofthe liquid drop.  相似文献   

2.
This study centres round the problem of flow of a liquid past a vertical porous flat plate. Considering two cases, when the plate is stationary and when it is in motion, the effect of porosity on the flow has been determined. It is found that, when the plate is stationary, the velocity of the liquid increases with increase in the suction velocity and decreases with increase in the injection velocity, and for a given suction or injection velocity, the velocity of the liquid increases with increase in time and approaches to the steady state case. But, when the plate is in motion, the velocity of the liquid decreases with increase in the suction velocity and increases with increase in the injection velocity in the constant film thickness region and also in the dynamic meniscus region provided that the gravitational force is greater than the surface tension force. In this case, the stagnation point and the minimum pressure point on the free surface have also been determined. In the case of injection there always exists a unique stagnation point and also a minimum pressure point. But in the case of suction the stagnation point does not always exist and there is no minimum pressure point.Nomenclature A n roots of equation (3.18) - C function defined by equation (4.20) - C n coefficients defined by equation (4.15) - F function of R 0 and T 0 defined by equation (4.23) - g acceleration of gravity - h film thickness at any point - h 0 film thickness in the constant thickness region - h m film thickness at the minimum pressure point - h st film thickness at the stagnation point - L m location of the minimum pressure point=h m /h 0 - L st location of the stagnation point=h st/h 0 - n summation index - N function defined by equation (4.11) - p pressure - q flow rate - q 0 flow rate in the constant thickness region - Q non-dimensional flow rate - R suction or injection Reynolds number=v 0 h 0/v - R 0 suction or injection Reynolds number corresponding to the constant thickness region=v 0 h/ - t time - T non-dimensional time=t/h 2 - T 0 non-dimensional parallel flow film thickness=h 0(g/u w )1/2 - u vertical velocity - u perturbation velocity for u - u s surface velocity - u W withdrawal velocity of the plate - U steady part of the velocity u for the stationary plate - non-dimensional velocity=u/gh 2 - U* non-dimensional velocity=U/gh 2 - v horizontal velocity - v perturbation velocity for V - v 0 velocity of suction or injection - V transient part of the velocity u for stationary plate - x, y coordinates - X non-dimensional x-coordinate=x 2/gh 4 - Y non-dimensional y-coordinate=y/h Greek Symbols n roots of equation (3.14) - n eigenvalues defined by equation (4.13) - n functions defined by equation (4.14) - n eigenvalues defined by equation (3.15) - n non-dimensional eigenvalues= n h/ - kinematic viscosity - liquid density - surface tension of the liquid air interface - stream function - non-dimensional stream function=/gh 3  相似文献   

3.
An analysis is made of Hall effects on the steady shear flow of a viscous incompressible electrically conducting fluid past an infinite porous plate in the presence of a uniform transverse magnetic field. It is shown that for suction at the plate, steady shear flow solution exists only when S2<Q, where S and Q are the suction and magnetic parameters, respectively. The primary flow velocity decreases with increase in Hall parameter m. But the cross-flow velocity first increases and then decreases with increase in m. Similar results are obtained for variation of the induced magnetic field with m. It is further found that for blowing at the plate, steady shear flow solution exists only when , where S1 is the blowing parameter.  相似文献   

4.
The axisymmetric spreading of a thin liquid drop under the influence of gravity and rotation is investigated. The effects of the Coriolis force and surface tension are ignored. The Lie group method is used to analyse the non-linear diffusion-convection equation modelling the spreading of the liquid drop under gravity and rotation. A stationary group invariant solution is obtained. The case when rotation is small is considered next. A straightforward perturbation approach is used to determine the effects of the small rotation on the solution given for spreading under gravity only. Over a short period of time no real difference is observed between the approximate solution and the solution for spreading under gravity only. After a long period of time, the approximate solution tends toward a dewetting solution. We find that the approximate solution is valid only in the interval t∈[0,t∗), where t∗ is the time when dewetting takes place. An approximation to t∗ is obtained.  相似文献   

5.
Rafael Cortell 《Meccanica》2013,48(9):2299-2310
The laminar boundary layer flow induced in a quiescent visco-elastic fluid by a permeable stretched flat surface with non-linearly (quadratic) velocity and appropriate wall transpiration under the influence of a magnetic field is investigated. It is shown that the problem permits a complete analytic exponentially decaying solution for the set of continuity and momentum equations with both magnetic field and visco-elasticity influences for two classes of visco-elastic fluid, namely, the second grade and Walters’ liquid B fluids. The effects on both the skin friction parameter α and velocity profiles of various physical parameters such as visco-elasticity, suction/blowing parameter and magnetic parameter are studied. The results for the velocity field are presented through graphs and discussed in detail.  相似文献   

6.
Hayat  T.  Hameed  M. I.  Asghar  S.  Siddiqui  A. M. 《Meccanica》2004,39(4):345-355
The exact analytic solutions of two problems of a second order fluid in presence of a uniform transverse magnetic field are investigated. The governing equation is of fourth order ordinary differential equation and is solved using perturbation method. In the first problem we discuss the flow of a second order fluid due to non-coaxial rotations of a porous disk and a fluid at infinity. In second problem the flow of a second order conducting fluid between two infinite plates rotating about the same axis is investigated, with suction or blowing along the axial direction. For second order conducting fluid it is observed that asymptotic solution exists for the velocity both in the case of suction and blowing.  相似文献   

7.
The present work deals with computational modeling of the fluid flow and heat transfer taking place in the process of impact of a cold liquid drop (Td = 20-25 °C) onto a dry heated substrate characterized by different thermophysical properties. The computational model, based on the volume-of-fluid method for the free-surface capturing, is validated by simulating the configurations accounting for the conjugate heat transfer. The simulations were performed in a range of impact Reynolds numbers (Re = 2000-4500), Weber numbers (We = 27-110) and substrate temperatures (Ts = 100-120 °C). The considered temperature range of the drop-surface, i.e. liquid-solid system does not account for the phase change, that is boiling and evaporation. The model performances are assessed by contrasting the results to the reference database originating from the experimental and complementary numerical investigations by Pasandideh-Fard et al. [Pasandideh-Fard, M., Aziz, S., Chandra, S., Mostaghimi, J., 2001. Cooling effectiveness of a water drop impinging on a hot surface. International Journal of Heat and Fluid Flow, 22, 201-210] and Healy et al. [Healy, W., Hartley, J., Abdel-Khalik, S., 2001. On the validity of the adiabatic spreading assumption in droplet impact cooling. International Journal of Heat and Mass Transfer, 44, 3869-3881]. In addition, the thermal field obtained is analyzed along with the corresponding asymptotic analytical solution proposed by Roisman [Roisman, I.V., 2010. Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition. Journal of Fluid Mechanics, 656, 189-204]. Contrary to some previous numerical studies, the present computational model accounts for the air flow surrounding the liquid drop. This model feature enables a small air bubble to be resolved in the region of the impact point. The reported results agree reasonably well with experimental and theoretical findings with respect to the drop spreading pattern and associated heat flux and temperature distribution.  相似文献   

8.
Rafael Cortell 《Meccanica》2012,47(3):769-781
An analysis is presented for the steady non-linear viscous flow of an incompressible viscous fluid over a horizontal surface of variable temperature with a power-law velocity under the influences of suction/blowing, viscous dissipation and thermal radiation. Numerical results are illustrated by means of tables and graphs. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation. The effects of the stretching parameter n, suction/blowing parameter b, Prandtl number σ, Eckert number Ec(Ec * )E_{c}(E_{c}^{ *} ) and radiation parameter N R are discussed. Two cases are studied, namely, (i) Prescribed surface temperature (PST case) and, (ii) Prescribed heat flux at the sheet (PHF case).  相似文献   

9.
An analysis is made of the steady flow of a non-Newtonian fluid past an infinite porous flat plate subject to suction or blowing. The incompressible fluid obeys Ostwald-de Waele power-law model. It is shown that steady solutions for velocity distribution exist only for a pseudoplastic (shear-thinning) fluid for which the power-law index n satisfies 0<n<1 provided that there is suction at the plate. Velocity at a point is found to increase with increase in n. No steady solution for velocity distribution exists when there is blowing at the plate. The solution of the energy equation governing temperature distribution in the flow of a pseudoplastic fluid past an infinite porous plate subject to uniform suction reveals that temperature at a given point near the plate increases with n but further away, temperature decreases with increase in n. A novel result of the analysis is that both the skin-friction and the heat flux at the plate are independent of n.  相似文献   

10.
A rarely adopted simple finite difference scheme has been successfully employed to solve the nonlinear coupled partial differential equations, with nonhomogeneous boundary condition, which describe the free convection at a vertical plate with transpiration. The solution is obtained for a Prandtl number of 0.72, in the blowing parameter range of — 1.9 < Cx < 1.9. The effects of suction and blowing on heat transfer and skin friction are discussed. It is concluded that the boundary layer has a better memory of the upstream suction distribution than of the upstream blowing distribution.  相似文献   

11.
The basic equation of market price of option is formulated by taking assumptions based on the characteristics of option and similar method for formulating basic equations in solid mechanics: hv 0(t) = m 1 v 0 –1(t) – n 1 v 0(t) + F, where h, m 1, n 1, F are constants. The main assumptions are: the ups and downs of market price v 0(t) are determined by supply and demand of the market; the factors, such as the strike price, tenor, volatility, etc. that affect on v 0(t) are demonstrated by using proportion or inverse proportion relation; opposite rules are used for purchasing and selling respectively. The solutions of the basic equation under various conditions are found and are compared with the solution v f (t) of the basic equation of market price of futures. Furthermore the one-one correspondence between v f and v 0(t) is proved by implicit function theorem, which forms the theoretic base for study of v f affecting on the market price of option v 0(t).  相似文献   

12.
Steady irrotational flow of inviscid liquid of density ρl around a spherical gas bubble which lies on the axis of a cylindrical pipe is investigated using the analysis of Smythe (Phys. Fluids 4 (1961) 756). The bubble radius b=qa is assumed small compared to the pipe radius a, and the interfacial tension between gas and liquid is γ. Far from the bubble, in the frame in which the bubble is at rest, the liquid velocity along the pipe is v0, whereas the liquid velocity at points on the wall closest to the bubble is Uzw=v0(1+1.776q3+⋯). The decrease in wall pressure as the bubble passes is therefore Δp=1.776ρlv02q3. When the Weber number W=2bv02ρl/γ is small, the bubble deforms into an oblate spheroid with aspect ratio χ=1+9W(1+1.59q3)/64. If the fluid viscosity μ is non-zero, and the Reynolds number Re=2v0ρlb/μ is large, a viscous boundary layer develops on the walls of the pipe. This decays algebraically with distance downstream of the bubble, and an exponentially decaying similarity solution is found upstream. The drag D on the bubble is D=12πμv0b(1−2.21Re−1/2)(1+1.59q3)+7.66μv0bRe1/2q9/2, larger than that given by Moore (J. Fluid Mech. 16 (1963) 161) for motion in unbounded fluid. At high Reynolds numbers the dissipation within the viscous boundary layers might dominate dissipation in the potential flow away from the pipe walls, but such high Reynolds numbers would not be achieved by a spherical air bubble rising in clean water under terrestrial gravity.  相似文献   

13.
This paper presents a numerical prediction of the formation of Goertler vortices on a concave surface with suction and blowing. Suction stabilizes the boundary layer flow on the surface, whereas blowing destabilizes the flow. The criterion on the position marking the onset of Goertler vortices is defined in the present paper. For facilitating the numerical study, the computation is carried out in the transformed x–η plane. The results show that the onset position characterized by the Goertler number depends on the local suction/blowing parameter, the Prandtl number and the wavenumber. The value of the critical Goertler number increases with the increase in suction, while the value of the Goertler number decreases with the increase in blowing. Both the experimental and the numerical data can be correlated by Gθ*=10.2(a′θ)*3/2 without suction and blowing and by a simple relation G*x=(G*x)γ=0 e−γ with suction and blowing. The obtained critical Goertler number and wavenumber are in good agreement with the previous experimental data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines the unsteady two‐dimensional flow of a second‐grade fluid between parallel disks in the presence of an applied magnetic field. The continuity and momentum equations governing the unsteady two‐dimensional flow of a second‐grade fluid are reduced to a single differential equation through similarity transformations. The resulting differential system is computed by a homotopy analysis method. Graphical results are discussed for both suction and blowing cases. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid (Math. Probl. Eng., DOI: 10.1155/2009/603916 ). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 ≤Re ≤ 200) and intersphere distances (1.5 ≤d ij ≤ 6.0) in the presence of surface blowing (0 ≤v b < 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re>100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments.  相似文献   

16.
This paper reports an experimental investigation on the wake of a blunt-based, flat plate subjected to aerodynamic flow vectoring using asymmetric synthetic jet actuation. Wake vectoring was achieved using a synthetic jet placed at the model base 2.5?mm from the upper corner. The wake Reynolds number based on the plate thickness was 7,200. The synthetic jet actuation frequency was selected to be about 75?% the vortex shedding frequency of the natural wake. At this actuation frequency, the synthetic jet delivered a periodic flow with a momentum coefficient, C ??, of up to 62?%. Simultaneous measurements of the streamwise and transverse components of the velocity were performed using particle image velocimetry (PIV) in the near wake. The results suggested that for significant wake vectoring, vortex shedding must be suppressed first. Under the flow conditions cited above, C ?? values in the range of 10?C20?% were required. The wake vectoring angle seemed to asymptote to a constant value of about 30° at downstream distances, x/h, larger than 4 for C ?? values ranging between 24 and 64?%. The phase-averaged vorticity contours and the phase-averaged normal lift force showed that most of the wake vectoring is produced during the suction phase of the actuation, while the blowing phase was mostly responsible for vortex shedding suppression.  相似文献   

17.
A one layer model of laminar non-Newtonian fluids (Ostwald-de Waele model) past a semi-infinite flat plate is revisited. The stretching and the suction/injection velocities are assumed to be proportional to x1/(1−2n) and x−1, respectively, where n is the power-law index which is taken in the interval . It is shown that the boundary-layer equations display both similarity and pseudosimilarity reductions according to a parameter γ, which can be identified as suction/injection velocity. Interestingly, it is found that there is a unique similarity solution, which is given in a closed form, if and only if γ=0 (impermeable surface). For γ≠0 (permeable surface) we obtain a unique pseudosimilarity solution for any 0≠γ≥−((n+1)/3n(1−2n))n/(n+1). Moreover, we explicitly show that any pseudosimilarity solution exhibits similarity behavior and it is, in fact, similarity solution to a modified boundary-layer problem for an impermeable surface. In addition, the exact similarity solution of the original boundary-layer problem is used, via suitable transverse translations, to construct new explicit solutions describing boundary-layer flows induced by permeable surfaces.  相似文献   

18.
A novel actuator signal achieved by changing the ratio of the suction duty cycle to the blowing duty cycle is adopted to enhance the control effect of the synthetic jet for the flow around a circular cylinder. The suction duty cycle factor k defined as the ratio between the time duration of the suction cycle and the blowing cycle and the equivalent momentum coefficient Cμ are introduced as the determining parameters. The synthetic jet is positioned at the rear stagnation point in order to introduce symmetric perturbations upon the flow field. The proper orthogonal decomposition (POD) technique is applied for the analysis of the spanwise vorticity field. Increasing the suction duty cycle factor, the momentum coefficient is enhanced, and thus a stronger and larger scale synthetic jet vortex pair with a higher convection velocity is generated. The synthetic jet vortex pair interacts with the spanwise vorticity shear layers behind both sides of the cylinder, resulting in the variations of the wake vortex shedding modes at Re=950: for k=0.25, Cμ=0.148, vortex synchronization at the subharmonic excitation frequency with antisymmetric shedding mode; for 0.50≤k≤1.00, 0.213≤Cμ≤0.378, vortex synchronization at the excitation frequency with the symmetric or antisymmetric shedding modes; for 2.00≤k≤4.00, 0.850≤Cμ≤2.362, vortex synchronization at the excitation frequency with symmetric shedding mode. Hence, the control effect of the synthetic jet upon the wake vortex of a circular cylinder can be enhanced by increasing the suction duty cycle factor so as to increase the momentum coefficient. This is also validated at a higher Reynolds number Re=1600.  相似文献   

19.
In this article we study the shape of free surfaces of a static fluid under gravity. We consider the meridian curve of a heavy liquid drop standing on a horizontal base: the main assumption concerns the liquid wetting capability, namely its contact angle well below \(\pi /2\) . The nonlinear differential boundary problem is solved through the shooting method. Our treatment is self-consistent as holding all demonstrations of existence, uniqueness, and computability. We conclude providing the eigenvalues set to the radius and the meridian curve of the drop through elliptic integrals: such a new exact solution—see (3.9) and (3.10) —is enriching the literature on capillarity.  相似文献   

20.
Using a simple change of variables, the Emden-Fowler equation, (xv + αy′)′ + axvyn = 0 is shown to be integrable provided that either of the constraints (v + α ? 1)n = 3 ? α + v or (v + α ? 1)n = 3 ? 2α ? v is satisfied. Every integrable case generates a one parameter family of integrable Emden-Fowler equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号