首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency-locking area of 2:1 and 1:1 resonances in a fast harmonically excited van der Pol–Mathieu–Duffing oscillator is studied. An averaging technique over the fast excitation is used to derive an equation governing the slow dynamic of the oscillator. A perturbation technique is then performed on the slow dynamic near the 2:1 and 1:1 resonances, respectively, to obtain reduced autonomous slow flow equations governing the modulation of amplitude and phase of the corresponding slow dynamics. These equations are used to determine the steady state responses, bifurcations and frequency-response curves. Analysis of quasi-periodic vibrations is carried out by performing multiple scales expansion for each of the dependent variables of the slow flows. Results show that in the vicinity of both considered resonances, fast harmonic excitation can change the nonlinear characteristic spring behavior from softening to hardening and causes the entrainment regions to shift. It was also shown that entrained vibrations with moderate amplitude can be obtained in a small region near the 1:1 resonance. Numerical simulations are performed to confirm the analytical results.  相似文献   

2.
Gusso  André  Ujevic  Sebastian  Viana  Ricardo L. 《Nonlinear dynamics》2021,103(2):1955-1967

In this work, we demonstrate numerically that two-frequency excitation is an effective method to produce chaotification over very large regions of the parameter space for the Duffing oscillator with single- and double-well potentials. It is also shown that chaos is robust in the last case. Robust chaos is characterized by the existence of a single chaotic attractor which is not altered by changes in the system parameters. It is generally required for practical applications of chaos to prevent the effects of fabrication tolerances, external influences, and aging that can destroy chaos. After showing that very large and continuous regions in the parameter space develop a chaotic dynamics under two-frequency excitation for the double-well Duffing oscillator, we demonstrate that chaos is robust over these regions. The proof is based upon the observation of the monotonic changes in the statistical properties of the chaotic attractor when the system parameters are varied and by its uniqueness, demonstrated by changing the initial conditions. The effects of a second frequency in the single-well Duffing oscillator is also investigated. While a quite significant chaotification is observed, chaos is generally not robust in this case.

  相似文献   

3.
The nonlinear dynamics of a hybrid Rayleigh–Van der Pol–Duffing oscillator includes pure and impure quadratic damping are investigated. The multiple timescales method is used to study exhaustively various resonances states. It is noticed that the system presents nine resonances states. The frequency response curves of quintic, third and second superharmonic, and subharmonic resonances states are obtained. Bistability, hysteresis, and jump phenomenon are also obtained. It is pointed out that these resonance phenomena are strongly related to the nonlinear cubic and quadratic damping and to the external force. The numerical simulations are used to make bifurcation sequences displayed by the model for each type of oscillatory. It is noticed that the pure quadratic, impure cubic damping, and external excitation affect regular and chaotic states.  相似文献   

4.
Summary Nonlinear dynamics of one-mode approximation of an axially moving continuum such as a moving magnetic tape is studied. The system is modeled as a beam moving with varying speed, and the transverse vibration of the beam is considered. The cubic stiffness term, arising out of finite stretching of the neutral axis during vibration, is included in the analysis while deriving the equations of motion by Hamilton's principle. One-mode approximation of the governing equation is obtained by the Galerkin's method, as the objective in this work is to examine the low-dimensional chaotic response. The velocity of the beam is assumed to have sinusoidal fluctuations superposed on a mean value. This approximation leads to a parametrically excited Duffing's oscillator. It exhibits a symmetric pitchfork bifurcation as the axial velocity of the beam is varied beyond a critical value. In the supercritical regime, the system is described by a parametrically excited double-well potential oscillator. It is shown by numerical simulation that the oscillator has both period-doubling and intermittent routes to chaos. Melnikov's criterion is employed to find out the parameter regime in which chaos occurs. Further, it is shown that in the linear case, when the operating speed is supercritical, the oscillator considered is isomorphic to the case of an inverted pendulum with an oscillating support. It is also shown that supercritical motion can be stabilised by imposing a suitable velocity variation. Received 13 February 1997; accepted for publication 29 July 1997  相似文献   

5.
Super-harmonic resonances may appear in the forced response of a weakly nonlinear oscillator having cubic nonlinearity, when the forcing frequency is approximately equal to one-third of the linearized natural frequency. Under super-harmonic resonance conditions, the frequency-response curve of the amplitude of the free-oscillation terms may exhibit saddle-node bifurcations, jump and hysteresis phenomena. A linear vibration absorber is used to suppress the super-harmonic resonance response of a cubically nonlinear oscillator with external excitation. The absorber can be considered as a small mass-spring-damper oscillator and thus does not adversely affect the dynamic performance of the nonlinear primary oscillator. It is shown that such a vibration absorber is effective in suppressing the super-harmonic resonance response and eliminating saddle-node bifurcations and jump phenomena of the nonlinear oscillator. Numerical examples are given to illustrate the effectiveness of the absorber in attenuating the super-harmonic resonance response.  相似文献   

6.
Possibilities for edge resonances to occur in structurally orthotropic cylindrical shells through which harmonic waves propagate are studied. It is shown that such resonances may be generated by axisymmetric longitudinal flexural waves propagating in a rigidly clamped semi-infinite shell __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 7, pp. 93–101, July 2005.  相似文献   

7.
This paper presents an investigation of limit cycles in oscillator systems described by a perturbed double-well Duffing equation. The analysis of limit cycles is made by the Melnikov theory. Expressing the solutions of the unperturbed Duffing equation by Jacobi elliptic functions allows us to calculate explicitly the Melnikov function, whereupon the final result is a function involving the complete elliptic integrals. The Melnikov function is analyzed with the aid of the Picard–Fuchs and Riccati equations. It has been proved that the considered oscillator system can have two small hyperbolic limit cycles located symmetrically with respect to the y-axis, or one large hyperbolic limit cycle, or two large hyperbolic limit cycles, or one large limit cycle of multiplicity 2. Moreover, we have obtained the conditions under which each of these limit cycles arises. The present work gives the conditions for the arising of limit cycles around the homoclinic trajectory. In this connection, an alternative approach is proposed for obtaining a series expansion of the Melnikov function near the homoclinic trajectory. This approach uses the series expansion of the complete elliptic integrals as the elliptic modulus tends to 1. It is shown that a jumping phenomenon may occur between limit cycles in the analyzed oscillator system. The conditions for the occurrence of this jumping phenomenon are given. A method for the synthesis of an oscillator system with a preliminary assigned limit cycle is also presented in the article. The obtained analytical results are illustrated and confirmed by numerical simulations.  相似文献   

8.
The diagonal terms in the added mass matrix for a two-dimensional surface-piercing structure, which satisfies a geometric condition known as the John condition, are proven to be non-negative. It is also shown that the heave coefficient, associated with a symmetric system of two such structures, is non-negative when the length of the free surface connecting the structures lies between an odd, and the next higher even, number of half-wavelengths. The sway and roll coefficients, associated with antisymmetric motion of the system, are non-negative in the complementary intervals. For a specific geometry these intervals are equivalent to frequency ranges. Negative added mass is associated with rapid variations with frequency, due to complex resonances that correspond to simple poles of the associated radiation potential in the complex frequency domain. Approximate techniques are used to show that, for systems of two structures, complex resonances are located at frequencies consistent with the intervals in which negative added mass is able to occur.  相似文献   

9.
The phenomenon of extraordinary acoustic transmission ( eat) in a resonator, which has recently been investigated experimentally, is studied theoretically. It is shown that the combination of a single propagating mode and a symmetry orthogonal to the direction of propagation for a resonator leads to eat. This is accomplished by decomposing the problem using symmetry, the Blaschke product and the properties of functions of a single complex variable which have modulus one on the real axis. The conditions of a resonator requires that the solution has singularities in the analytic extension to complex frequencies (resonances) and it is precisely near these resonances that we observe eat. The condition of a Blaschke product requires that there is a zero at the complex conjugate of the singularity and eat occurs when the solution on the real axis passes between these complex conjugate pairs of poles and zeros. A detailed numerical study of the problem is conducted and we show that once the single mode of propagation or the symmetry is broken then eat (at least perfect transmission) no longer holds generally.  相似文献   

10.
The jump and bifurcation of Duffing oscillator with hardening spring subject to narrow-band random excitation are systematically and comprehensively examined. It is shown that, in a certain domain of the space of the oscillator and excitation parameters, there are two types of more probable motions in the stationary response of the Duffing oscillator and jumps may occur. The jump is a transition of the response from one more probable motion to another or vise versa. Outside the domain the stationary response is either nearly Gaussian or like a diffused limit cycle. As the parameters change across the boundary of the domain the qualitative behavior of the stationary response changes and it is a special kind of bifurcation. It is also shown that, for a set of specified parameters, the statistics are unique and they are independent of initial condition. It is pointed out that some previous results and interpretations on this problem are incorrect. The project supported by National Natural Science Foundation of China  相似文献   

11.
The flexural vibration of a symmetrically laminated composite cantilever beam carrying a sliding mass under harmonic base excitations is investigated. An internally mounted oscillator constrained to move along the beam is employed in order to fulfill a multi-task that consists of both attenuating the beam vibrations in a resonance status and harvesting this residual energy as a complementary subtask. The set of nonlinear partial differential equations of motion derived by Hamilton’s principle are reduced and semi-analytically solved by the successive application of Galerkin’s and the multiple-scales perturbation methods. It is shown that by properly tuning the natural frequencies of the system, internal resonance condition can be achieved. Stability of fixed points and bifurcation of steady-state solutions are studied for internal and external resonances status. It results that transfer of energy or modal saturation phenomenon occurs between vibrational modes of the beam and the sliding mass motion through fulfilling an internal resonance condition. This study also reveals that absorbers can be successfully implemented inside structures without affecting their functionality and encumbering additional space but can also be designed to convert transverse vibrations into internal longitudinal oscillations exploitable in a straightforward manner to produce electrical energy.  相似文献   

12.

This paper explores the complicated dynamic behavior of a mechanical oscillator under harmonic angular excitation. The motivation behind this work comes from the nature of the actuation produced by high-performance dither motors. A lumped-mass model, which captures the primary and the 1 : 2 superharmonic resonances observed on an analogous experimental test setup, is put forward. The equations of motion governing the dynamics of the model are derived and are found to comprise both parametric and direct forcing terms. The governing equations are solved analytically using the generalized harmonic balance method and numerical integration. The method of multiple scales is utilized to obtain closed-form expressions that relate the system parameters to the oscillation amplitudes in the vicinity of the direct and the 1 : 2 superharmonic resonances. It is found that eccentricity plays a vital role in the occurrence of the resonances. Besides, the relationship between the excitation amplitudes and the resulting oscillations for the direct and the superharmonic resonances are dissimilar. A few salient differences between classical (rectilinear) and angular base excitation mechanisms are pointed out.

  相似文献   

13.
This work introduces a reduced-order method to study the parametric excitations and lock-in of flexible hydrofoils caused by unsteady two-phase (cavitating) flow. The reduced-order method is based on a 1-DOF structural model coupled with a van der Pol wake oscillator with empirically derived relations for the variation in lift, cavity-length, and cavity-shedding frequency as a function of a non-dimensional cavitation parameter. The results are compared with several available data from both numerical simulations and experimental measurements. The frequency content of both the predicted and measured vibrations suggested that, in addition to the primary cavity-shedding frequency and the hydrofoil natural frequencies, unsteady two-phase flows may excite additional modulated frequencies due to time-varying fluid-added mass effects. The results show that these frequency modulations might cause the flexible hydrofoil to undergo higher-order resonances, as well as parametric resonances. While the maximum deformations for the primary and higher-order resonances were observed to damp out, parametric resonances might persist even with realistic fluid damping coefficients (4–12%). It was observed that with higher effective foil flexibility, the cavity-shedding frequencies may be significantly modified from the rigid foil trends, and may instead lock-in with the system natural frequencies.  相似文献   

14.
Two parametrically-induced phenomena are addressed in the context of a double pendulum subject to a vertical base excitation. First, the parametric resonances that cause the stable downward vertical equilibrium to bifurcate into large-amplitude periodic solutions are investigated extensively. Then the stabilization of the unstable upward equilibrium states through the parametric action of the high-frequency base motion is documented in the experiments and in the simulations. It is shown that there is a region in the plane of the excitation frequency and amplitude where all four unstable equilibrium states can be stabilized simultaneously in the double pendulum. The parametric resonances of the two modes of the base-excited double pendulum are studied both theoretically and experimentally. The transition curves (i.e., boundaries of the dynamic instability regions) are constructed asymptotically via the method of multiple scales including higher-order effects. The bifurcations characterizing the transitions from the trivial equilibrium to the periodic solutions are computed by either continuation methods and or by time integration and compared with the theoretical and experimental results.  相似文献   

15.
The problem of free vibrations of a beam with free ends of variable cross section and mass, from which point masses (oscillators) are suspended by bars, is considered. It is shown that parametric resonances can occur in this oscillating system. Numerical examples showing the efficiency of the calculation method proposed are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 135–144, July–August, 2006.  相似文献   

16.
Summary  Transversal vibrations of a uniformly moving two-mass oscillator on a Timoshenko beam of infinite length supported by a viscoelastic foundation are studied. By using integral transforms, the characteristic equation for the oscillator's vibrations is obtained. It is shown that the equation may have a root with a positive real part. The existence of such a root leads to the exponential increase of the amplitude of the oscillator vibrations, i.e. to instability. The reasons for the instability to occur are discussed. By employing the method of D-decomposition, the instability domains are found in the space of the system parameters. Received 30 October 2000; accepted for publication 28 March 2001  相似文献   

17.
In this paper strongly nonlinear oscillator equations will be studied.It will be shown that the recently developed perturbation method based onintegrating factors can be used to approximate first integrals. Not onlyapproximations of first integrals will be given, butit will also be shown how in a rather efficient way the existence and stability oftime-periodic solutions can be obtained from these approximations. In particularthe generalized Rayleigh oscillator equation will be studied in detail, and it will beshown that at least five limit cycles can occur.  相似文献   

18.
A system of three coupled limit cycle oscillators with vastly different frequencies is studied. The three oscillators, when uncoupled, have the frequencies ?? 1=O(1), ?? 2=O(1/??) and ?? 3=O(1/?? 2), respectively, where ???1. The method of direct partition of motion (DPM) is extended to study the leading order dynamics of the considered autonomous system. It is shown that the limit cycles of oscillators 1 and 2, to leading order, take the form of a Jacobi elliptic function whose amplitude and frequency are modulated as the strength of coupling is varied. The dynamics of the fastest oscillator, to leading order, is unaffected by the coupling to the slower oscillator. It is also found that when the coupling strength between two of the oscillators is larger than a critical bifurcation value, the limit cycle of the slower oscillator disappears. The obtained analytical results are formal and are checked by comparison to solutions from numerical integration of the system.  相似文献   

19.
We investigate the dynamics of a system consisting of a simple harmonic oscillator with small nonlinearity, small damping and small parametric forcing in the neighborhood of 2:1 resonance. We assume that the unforced system exhibits the birth of a stable limit cycle as the damping changes sign from positive to negative (a supercritical Hopf bifurcation). Using perturbation methods and numerical integration, we investigate the changes which occur in long-time behavior as the damping parameter is varied. We show that for large positive damping, the origin is stable, whereas for large negative damping a quasi-periodic behavior occurs. These two steady states are connected by a complicated series of bifurcations which occur as the damping is varied.  相似文献   

20.
This paper investigates oscillations in a flexible rotor system with radial clearance between an outer ring of the bearing and a casing by experiments and numerical simulations. The mathematical model considers the collisions of the bearing with the casing. The following phenomena are found: (1) Nonlinear resonances of subharmonic, super-subharmonic and combination oscillation occur. (2) Self-excited oscillation of a forward whirling mode occurs in a wide range above the major critical speed. (3) Entrainment phenomena from self-excited oscillation to nonlinear forced oscillation occur at these nonlinear resonance ranges. Moreover, this study analyzes periodic solutions of the mathematical model by the Harmonic Balance Method (HBM). As the results, the nonlinear resonances of subharmonic oscillation and its entrainment phenomenon can be explained theoretically by investigating the stability of the periodic solutions. The influence of the static force and the bearing damping on these oscillation are also clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号