首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
The flux-vector splitting method is applied to the convective part of the steady Navier-Stokes equations for incompressible flow. By the use of partial upwind differences in the split first-order part and central differences in the second-order part, a set of discrete equations is obtained which can be solved by vector variants of classical relaxation schemes. It is shown that accurate results can be obtained on one of the GAMM backward-facing step test problems.  相似文献   

2.
The paper's leitmotiv is condensed in one word: robustness. This is a real hindrance for the successful implementation of any multigrid scheme for solving the Navier–Stokes set of equations. In this paper, many hints are given to improve this issue. Instead of looking for the best possible speed‐up rate for a particular set of problems, at a given regime and in a given condition, the authors propose some ideas pursuing reasonable speed‐up rates in any situation. In a previous paper, the authors presented a multigrid method for solving the incompressible turbulent RANS equations, with particular care in the robustness and flexibility of the solution scheme. Here, these concepts are further developed and extended to compressible laminar and turbulent flows. This goal is achieved by introducing a non‐linear multigrid scheme for compressible laminar (NS equations) and turbulent flow (RANS equations), taking benefit of a convenient master–slave implementation strategy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a high-order compact finite difference algorithm is established for the stream function-velocity formulation of the two-dimensional steady incompressible Navier-Stokes equations in general curvilinear coordinates. Different from the previous work, not only the stream function and its first-order partial derivatives but also the second-order mixed partial derivative is treated as unknown variable in this work. Numerical examples, including a test problem with an analytical solution, three types of lid-driven cavity flow problems with unusual shapes and steady flow past a circular cylinder as well as an elliptic cylinder with angle of attack, are solved numerically by the newly proposed scheme. For two types of the lid-driven trapezoidal cavity flow, we provide the detailed data using the fine grid sizes, which can be considered the benchmark solutions. The results obtained prove that the present numerical method has the ability to solve the incompressible flow for complex geometry in engineering applications, especially by using a nonorthogonal coordinate transformation, with high accuracy.  相似文献   

4.
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k\({\varepsilon}\) turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.  相似文献   

5.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Flux splitting is applied to the convective part of the steady Navier–Stokes equations for incompressible flow. Partial upwind differences are introduced in the split first-order part, while central differences are used in the second-order part. The discrete set of equations obtained is positive, so that it can be solved by collective variants of relaxation methods. The partial upwinding is optimized in the same way as for a scalar convection–diffusion equation, but involving several Peclet numbers. It is shown that with the optimum partial upwinding accurate results can be obtained. A full multigrid method in W-cycle form, using red–black successive under-relaxation, injection and bilinear interpolation, is described. The efficiency of this method is demonstrated.  相似文献   

7.
Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M ≈0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin (DG) discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to an incompressible formulation. Our contributions to the state of the art are twofold: Firstly, we present a high-performance DG solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures with Flop/Byte ratios significantly larger than 1. The performance results presented in this work focus on the node-level performance, and our results suggest that there is great potential for further performance improvements for current state-of-the-art DG implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows. The results indicate a clear performance advantage of the incompressible formulation over the compressible one.  相似文献   

8.
In the present article, the droplet dynamics in turbulent flow is numerically predicted. The modelling is based on an interfacial marker-level set (IMLS) method, coupled with the Reynolds-averaged Navier–Stokes (RANS) equations to predict the dynamics of turbulent two-phase flow. The governing equations for time-dependent, two-dimensional and incompressible two-phase flow are described in both phases and solved separately using a control volume approach on structured cell-centred collocated grids. The topological changes of the interface are predicted by applying the level set approach. The kinematic and dynamic conditions on the interface separating the two phases are satisfied. The numerical method proposed is validated against a well-known computational fluid dynamics problem. Further, the deformation and breakup of a single droplet either suddenly moved in air or exposed to turbulent stream are numerically investigated. In general, the developed numerical method demonstrates remarkable capability in predicting the characteristics of complex turbulent two-phase flows.  相似文献   

9.
A higher‐order finite analytic scheme based on one‐dimensional finite analytic solutions is used to discretize three‐dimensional equations governing turbulent incompressible free surface flow. In order to preserve the accuracy of the numerical scheme, a new, finite analytic boundary condition is proposed for an accurate numerical solution of the partial differential equation. This condition has higher‐order accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were formulated and derived for fluid inflow, outflow, impermeable surfaces and symmetry planes. The derived boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea for the derivation of boundary conditions was to use the discretized form of the governing equations for the fluid flow simplified on the boundaries and flow information. To illustrate the influence of the higher‐order effects at the boundaries, another, lower‐order finite analytic boundary condition, is suggested. The simulations are performed to demonstrate the validity of the present scheme and boundary conditions for a Wigley hull advancing in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A p-version least squares finite element formulation for non-linear problems is applied to the problem of steady, two-dimensional, incompressible fluid flow. The Navier-Stokes equations are cast as a set of first-order equations involving viscous stresses as auxiliary variables. Both the primary and auxiliary variables are interpolated using equal-order C0 continuity, p-version hierarchical approximation functions. The least squares functional (or error functional) is constructed using the system of coupled first-order non-linear partial differential equations without linearization, approximations or assumptions. The minimization of this least squares error functional results in finding a solution vector {δ} for which the partial derivative of the error functional (integrated sum of squares of the errors resulting from individual equations for the entire discretization) with respect to the nodal degrees of freedom {δ} becomes zero. This is accomplished by using Newton's method with a line search. Numerical examples are presented to demonstrate the convergence characteristics and accuracy of the method.  相似文献   

12.
This paper presents a p- version least squares finite element formulation (LSFEF) for two-dimensional, incompressible, non-Newtonian fluid flow under isothermal and non-isothermal conditions. The dimensionless forms of the diffential equations describing the fluid motion and heat transfer are cast into a set of first-order differential equations using non-Newtonian stresses and heat fluxes as auxiliary variables. The velocities, pressure and temperature as well as the stresses and heat fluxes are interpolated using equal-order, C0-continuous, p-version hierarchical approximation functions. The application of least squares minimization to the set of coupled first-order non-linear partial differential equations results in finding a solution vector {δ} which makes the partial derivatives of the error functional with respect to {δ} a null vector. This is accomplished by using Newton's method with a line search. The paper presents the implementation of a power-law model for the non-Newtonian Viscosity. For the non-isothermal case the fluid properties are considered to be a function of temperature. Three numerical examples (fully developed flow between parallel plates, symmetric sudden expansion and lid-driven cavity) are presented for isothermal power-law fluid flow. The Couette shear flow problem and the 4:1 symmetric sudden expansion are used to present numerical results for non-isothermal power-law fluid flow. The numerical examples demonstrate the convergence characteristics and accuracy of the formulation.  相似文献   

13.
A brief review of the computation of incompressible turbulent flow in complex geometries is given. A 2D finite volume method for the calculation of turbulent flow in general curvilinear co-ordinates is described. This method is based on a staggered grid arrangement and the contravariant flux componets are chosen as primitive variables. Turbulence is modelled either by the standard k–ε model or by a k–ε model based on RNG theory. Convection is approximated with central differences for the mean flow quantities and a TVD-type MUSCL scheme for the turbulence equations. The sensitivity of the method to the grid properties is investigated. An application of this method to a complex turbulent flow is presented. The results of computations are compared with experimental data and other numerical solutions and are found to be satisfactory.  相似文献   

14.
采用最小二乘算子分裂有限元法求解非定常不可压N-S(Navier-Stokes)方程,即在每个时间层上采用算子分裂法将N-S方程分裂成扩散项和对流项,这样既能考虑对流占优特点又能顾及方程的扩散性质。扩散项是一个抛物型方程,时间离散采用向后差分格式,空间离散采用标准Galerkin有限元法。对流项的时间项采用后向差分格式,非线性部分用牛顿法进行线性化处理,再用最小二乘有限元法进行空间离散,得到对称正定的代数方程组系数矩阵。采用Re=1000的方腔流对该算法的有效性进行检验,表明其具有较高的精度,能够很好地捕捉流场中的涡结构。同时,对圆柱层流绕流进行了数值研究,通过流线图、压力场、阻力系数、升力系数及斯特劳哈数等结果的分析与对比,表明本文算法对于模拟圆柱层流绕流是准确和可靠的。  相似文献   

15.
Semiempirical expressions are proposed for the coefficient of turbulent viscosity and for the scale of turbulence in the equations for the free turbulent boundary layer in an incompressible fluid, these equations consisting of the equation of continuity, the equations of motion, and the equation for the average energy balance in the turbulent pulsations. The advantage of the expressions over the existing ones is that the two empirical constants in the equations have nearly the same values for circular and plane turbulent streams and also for a turbulent boundary layer at the edge of a semiinfinite homogeneous flow with a stationary fluid. The mean-energy distribution and the mean energy of the turbulent pulsations computed in this paper agree well with the experimental values.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 75–79, November–December, 1970.  相似文献   

16.
Summary A general theory of turbulent flow is applied to incompressible plane Couette flow. It is found that a unique formulation is not obtained because of a singularity in the equations and problems relating to the boundary conditions. Solutions are obtained for several different assumptions. The characteristic feature is a square root velocity profile for high Reynolds numbers. The logarithmic law is obtained as a divergent approximation. There are discrepancies in the available experimental data; one set agreeing with the square root form, and a second set with the logarithmic form.  相似文献   

17.
18.
The present paper discusses the application of large eddy simulation to incompressible turbulent flows in complex geometries. Algorithmic developments concerning the flow solver were provided in the companion paper (Int. J. Numer. Meth. Fluids, 2003; submitted), which addressed the development and validation of a multi‐domain kernel suitable for the integration of the elliptic partial differential equations arising from the fractional step procedure applied to the incompressible Navier–Stokes equations. Numerical results for several test problems are compared to reference experimental and numerical data to demonstrate the potential of the method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This work is devoted to the examination of the suitability of some second moment closures. The main result emerging is that there is a strong link between the realizability of the Reynolds stress closures and the hyperbolicity of the first-order differential system associated with the general governing set of partial differential equations.  相似文献   

20.
In previous papers, we proposed finite element schemes based on the Petrov-Galerkin weak formulation using exponential weighting functions for solving accurately, and in a stable manner, the flow field of an incompressible viscous fluid. In this paper, we present the Petrov-Galerkin finite element scheme for turbulent flow fields based on large eddy simulation using the standard Smagorinsky model with the Van Driest damping function. The filtered incompressible Navier-Stokes equations are numerically integrated in time by using a fractional step strategy with second-order accurate Adams-Bashforth explicit differencing for both convection an diffusion terms. In order to evaluate more accurately a mass matrix, the well-known multi-pass algorithm was also adopted in this study. Numerical results obtained are compared through flow around a rectangular cylinder at Re = 22,000 with the experimental data and other existing numerical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号