首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在统一粘塑性循环本构理论框架下,以Ohno-Abdel-Karim非线性随动硬化模型为基础,建立了一个循环本构模型。模型通过引入塑性应变幅值记忆效应,并在塑性应变记忆项中加入恢复系数,提高了对循环硬化材料单轴棘轮行为的预言能力。将模型应用于316L不锈钢单轴棘轮行为的描述中,模拟不同平均应力、应力幅值下的棘轮应变,均与实验数据吻合较好,证明本文改进的本构模型能合理地描述循环硬化材料的单轴棘轮行为。  相似文献   

2.
在Valanis的内时本构理论的框架中,引入内结构张量以反映由于非比例加载而引起金属材料的附加等向强化及异向强化效应,同时提出材料强化程度的度量采用沿路径法线方向的塑性应变分量来描述.这些考虑的有效性已经通过用所建模型对304不锈钢材料在一些典型非比例循环加载路径下的响应进行的理论预测得到了验证;将该模型应用于U71Mn材料室温单轴棘轮行为描述中,结果显示内结构张量的引入不仅能较好地反映应变控制下的非比例附加效应,而且也能较好地反映应力控制下塑性应变的累积及变化率.  相似文献   

3.
杨超  吴昊 《固体力学学报》2021,42(5):518-531
本文对316L不锈钢进行了单轴与多轴非比例路径下的应力控制棘轮试验,考察了应力幅值、平均应力和加载历程对棘轮特性的影响。同时进行了应变控制循环试验以研究材料的应力松弛特性。试验结果表明轴向棘轮效应在对称剪切荷载下效果明显,同时棘轮应变随应力幅值和平均应力的增加而增加。研究了Chen-Jiao随动强化模型与Jiang-Sehitoglu随动强化模型采用的单轴与多轴参数对背应力分量增量方向的影响,将Chen-Jiao模型中的多轴系数替换为界面饱和率,并在此基础上引入新的参数对塑性模量系数进行修正,计算结果表明修正后的模型能提升应力控制下多轴棘轮的预测精度,并能很好的预测应力松弛现象,表明了新模型的正确性与有效性。  相似文献   

4.
徐辰旻  吴昊 《力学季刊》2021,42(3):517-527
一些金属材料在承担多轴非比例加载过程时,会产生额外非比例附加强化或软化现象,这一现象往往会导致在评估疲劳寿命时因为材料本构关系的不确定而引起预测结果出现较大误差.因此基于单轴疲劳理论得出的寿命预测模型并不能准确地预测多轴非比例疲劳加载下的材料寿命.针对此问题,本文阐述了非比例附加强化效应产生的原因及结果,结合转动惯量法的理论和塑性增量法,建立了预测多轴低周疲劳加载下循环应力-应变曲线的数值计算模型.利用316L 不锈钢试样在5 种加载路径下的实验数据对预测结果进行了验证,结果表明该模型具有良好的预测有效性及精度.  相似文献   

5.
The uniaxial ratcheting of SS304 stainless steel at high temperatures (300, 600 and 700 °C) were analyzed experimentally, and described by a cyclic constitutive visco-plasticity model. The rate dependence of the material was accounted for by introducing a viscous term. The cyclic hardening and cyclic flow behavior of the material under asymmetrical stress-controlled cycling were described by the evolution rules of kinematic hardening back stress and isotropic deforming resistance. Under the isothermal condition, temperature effect was included by terms involving temperature in the evolution equations of isotropic deforming resistance. The effect of load history on ratcheting was also considered by introducing a fading memory function of the maximum inelastic strain amplitude and isotropic deformation resistance. After the material constants were determined from the experimental data, the uniaxial ratcheting of SS304 stainless steel was numerically simulated and compared with the corresponding experimental results at high temperatures. The predicted results agree well with the experimental ones.  相似文献   

6.
Uniaxial ratcheting and failure behaviors of two steels   总被引:2,自引:0,他引:2  
The strain cyclic characteristics, ratcheting and failure behaviors of 25CDV4.11 steel and SS304 stainless steel were experimentally studied under uniaxial cyclic tests and at room temperature. The cyclic hardening/softening features of the materials were first observed under uniaxial strain cycling; and then the ratcheting and failure behaviors of the materials were researched in detail under cyclic stressing. The effects of stress amplitude and mean stress on the ratcheting and failure were discussed under uniaxial asymmetrical stress cycling. It is concluded that the ratcheting and failure behaviors of the materials depend greatly on the cyclic softening/hardening features of the materials and the stress values of cyclic loading. Some conclusions useful to understand the fatigue failure of the materials presented under asymmetrical cyclic stressing are obtained.  相似文献   

7.
Some novel discriminating multiaxial cyclic strain paths with incremental and random sequences were used to investigate cyclic deformation behavior of materials with low and high sensitivity to non-proportional loadings. Tubular specimens made of 1050 QT steel with no non-proportional hardening and 304L stainless steel with significant non-proportional hardening were used. 1050 QT steel was found to exhibit very similar behavior under various multiaxial loading paths, whereas significant effects of loading sequence were observed for 304L stainless steel. In-phase cycles with a random sequence of axial-torsion cycles on an equivalent strain circle were found to cause cyclic hardening levels similar to 90° out-of-phase loading of 304L stainless steel. In contrast, straining with a small increment of axial-torsion on an equivalent strain circle results in higher stress than for in-phase loading of 304L stainless steel, but the level of hardening is lower than for 90° out-of-phase loading. Tanaka’s non-proportionality parameter coupled with a Armstrong–Fredrick incremental plasticity model, and Kanazawa et al.’s empirical formulation as a representative of such empirical models were used to predict the stabilized stress response of the two materials under variable amplitude axial-torsion strain paths. Consistent results between experimental observations and predictions were obtained by employing the Tanaka’s non-proportionality parameter. In contrast, the empirical model resulted in significant over-prediction of stresses for 304L stainless steel.  相似文献   

8.
Key issues in cyclic plasticity modeling are discussed based upon representative experimental observations on several commonly used engineering materials. Cyclic plasticity is characterized by the Bauschinger effect, cyclic hardening/softening, strain range effect, nonproporitonal hardening, and strain ratcheting. Additional hardening is identified to associate with ratcheting rate decay. Proper modeling requires a clear distinction among different types of cyclic plasticity behavior. Cyclic hardening/softening sustains dependent on the loading amplitude and loading history. Strain range effect is common for most engineering metallic materials. Often, nonproportional hardening is accompanied by cyclic hardening, as being observed on stainless steels and pure copper. A clarification of the two types of material behavior can be made through benchmark experiments and modeling technique. Ratcheting rate decay is a common observation on a number of materials and it often follows a power law relationship with the number of loading cycles under the constant amplitude stress controlled condition. Benchmark experiments can be used to explore the different cyclic plasticity properties of the materials. Discussions about proper modeling are based on the typical cyclic plasticity phenomena obtained from testing several engineering materials under various uniaxial and multiaxial cyclic loading conditions. Sufficient experimental evidence points to the unambiguous conclusion that none of the hardening phenomena (cyclic hardening/softening, strain range effect, nonproportional hardening, and strain hardening associated with ratcheting rate decay) is isotropic in nature. None of the hardening behavior can be properly modeled with a change in the yield stress.  相似文献   

9.
A constitutive model for creep deformation that describes the loading-history-dependent behavior of initially isotropic materials with different properties in tension and compression under stress vector rotations limited by 50–60° is presented within a thermodynamic framework. In the proposed constitutive model a kinematic hardening rule is adopted. This model also introduces an effective equivalent stress in the creep potential that is based on the first and second invariants of the effective stress tensor, and on the joint invariant of the effective stress tensor and eigenvector associated with the maximum principal Cauchy stress. The formulation of the kinematic hardening rule is presented and discussed. All the material parameters in the model have been obtained from a series of proposed basic experiments with constant stresses. These model parameters are then used to predict the creep deformation of the aluminum alloy under multiaxial loading with constant stresses, and under non-proportional uniaxial and non-proportional multiaxial loadings for both isothermal and nonisothermal processes.  相似文献   

10.
This paper critically evaluates the performance of five constitutive models in predicting ratcheting responses of carbon steel for a broad set of uniaxial and biaxial loading histories. The models proposed by Prager, Armstrong and Frederick, Chaboche, Ohno-Wang and Guionnet are examined. Reasons for success and failure in simulating ratcheting by these models are elaborated. The bilinear Prager and the nonlinear Armstrong-Frederick models are found to be inadequate in simulating ratcheting responses. The Chaboche and Ohno-Wang models perform quite well in predicting uniaxial ratcheting responses; however, they consistently overpredict the biaxial ratcheting responses. The Guionnet model simulates one set of biaxial ratcheting responses very well, but fails to simulate uniaxial and other biaxial ratcheting responses. Similar to many earlier studies, this study also indicates a strong influence of the kinematic hardening rule or backstress direction on multiaxial ratcheting simulation. Incorporation of parameters dependent on multiaxial ratcheting responses, while dormant for uniaxial responses, into Chaboche-type kinematic hardening rules may be conducive to improve their multiaxial ratcheting simulations. The uncoupling of the kinematic hardening rule from the plastic modulus calculation is another potentially viable alternative. The best option to achieve a robust model for ratcheting simulations seems to be the incorporation of yield surface shape change (formative hardening) in the cyclic plasticity model.  相似文献   

11.
304不锈钢室温和高温单轴循环塑性的实验研究   总被引:2,自引:0,他引:2  
对304不锈钢进行了室温和高温单轴应变控制和应力控制下的系统循环试验。揭示和分析了循环应变幅值、平均应变及其历史和温度历史对材料应变循环特性的影响以及应力幅值、平均应力及其历史以及温度对循环棘轮行为的影响。也讨论了应变循环和应力循环间交互作用对材料循环塑性行为的影响。研究表明,无益单轴应变循环特性还是非对称单轴应力循环下的棘轮效应不仅取决于当前温度和加载状态,而且强烈依赖于其加载历史。研究得到了一些有助于304不锈钢室温和高温单轴循环行为本构描述的结果。  相似文献   

12.
吴昊  仲政 《力学季刊》2016,37(2):201-213
工程中的大多数构件承受着比例或非比例多轴疲劳荷载作用,而非比例强化效应会大大影响其多轴疲劳寿命。精确预测金属材料在多轴非比例荷载下的低周疲劳寿命需要同时考虑等向强化、随动强化及非比例强化效应下的材料本构关系,并在临界面上计算出相应应力应变值,根据不同疲劳失效形式选取不同类型的失效模型来确定疲劳寿命.本文针对这一过程中重要知识点进行阐述,并介绍了相关模型与理论.  相似文献   

13.
In a search for a constitutive model for ratcheting simulations, the models by Chaboche, Ohno–Wang, McDowell, Jiang–Sehitoglu, Voyiadjis–Basuroychowdhury and AbdelKarim–Ohno are evaluated against a set of uniaxial and biaxial ratcheting responses. With the assumption of invariant shape of the yield surface during plastic loading, the ratcheting simulations for uniaxial loading are primarily a function of the plastic modulus calculation, whereas the simulations for multiaxial loading are sensitive to the kinematic hardening rule of a model. This characteristic of the above mentioned models is elaborated in this paper. It is demonstrated that if all parameters of the kinematic hardening rule are determined from uniaxial responses only, these parameters primarily enable a better plastic modulus calculation. However, in this case the role of the kinematic hardening rule in representing the ratcheting responses for multiaxial loading is under-appreciated. This realization motivated many researchers to incorporate multiaxial load dependent terms or parameters into the kinematic hardening rule. This paper evaluates some of these modified rules and finds that none is general enough to simulate the ratcheting responses consistently for the experiments considered. A modified kinematic hardening rule is proposed using the idea of Delobelle and his co-workers in the framework of the Chaboche model. This new rule introduces only one multiaxial load dependent parameter to the Chaboche model, but performs the best in simulating all the ratcheting responses considered.  相似文献   

14.
循环软化45碳钢和循环硬化304不锈钢的棘轮行为实验研究   总被引:1,自引:1,他引:0  
对循环软化45碳钢的单轴应力循环下的平均应力、应力幅值以及先前应变循环对棘轮效应的影响进行了实验研究;并对循环硬化的304不锈钢进行了多种非比例循环加载路径下路径形状、路径等效应力幅值、平均应变与平均应力对材料棘轮变形行为的影响实验.发现平均应力和应力幅值及其历史对于材料的棘轮行为都有很大的影响.  相似文献   

15.
A recent study by Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] demonstrated that some of the nonproportional ratcheting responses under stress-controlled loading histories cannot be simulated reasonably by two recent cyclic plasticity models. Two major drawbacks of the models identified were: (i) the stainless steel 304 demonstrated cyclic hardening under strain-controlled loading whereas cyclic softening under stress-controlled loading, which depends on the strain-range and which the existing models cannot describe; (ii) the change in biaxial ratcheting responses due to the change in the degree of nonproportionality were not simulated well by the models. Motivated by these findings, two modified cyclic plasticity models are evaluated in predicting a broad set of cyclic and ratcheting response of stainless steel 304. The experimental responses used in evaluating the modified models included both proportional (uniaxial) and nonproportional (biaxial) loading responses from Hassan and Kyriakides [Hassan, T., Kyriakides, S., 1994a. Ratcheting of cyclically hardening and softening materials. Part I: uniaxial behavior. Int. J. Plasticity, 10, 149–184; Hassan, T., Kyriakides, S., 1994b. Ratcheting of cyclically hardening and softening materials. Part II: multiaxial behavior. Int. J. Plasticity, 10, 185–212.] and Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] The first model studied is a macro-scale, phenomenological, constitutive model originally proposed by Chaboche et al. [Chaboche, J.L., Dang-Van, K., Cordier, G., 1979. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the Fifth International Conference on SMiRT, Div. L, Berlin, Germany, L11/3.]. This model was systematically modified for incorporating strain-range dependent cyclic hardening–softening, and proportional and nonproportional loading memory parameters. The second model evaluated is a polycrystalline model originally proposed by Cailletaud [Cailletaud, G., 1992. A micromechanical approach to inelastic behavior of metals. Int. J. Plasticity, 8, 55–73.] based on crystalline slip mechanisms. These two models are scrutinized against simulating hysteresis loop shape, cyclic hardening–softening, cross-effect, cyclic relaxation, subsequent cyclic softening and finally a broad set of ratcheting responses under uniaxial and biaxial loading histories. The modeling features which improved simulations for these responses are elaborated in the paper. In addition, a novel technique for simulating both the monotonic and cyclic responses with one set of model parameters is developed and validated.  相似文献   

16.
在室温下对退火和调质42CrMo合金钢进行了单轴应变控制和应力控制的系统循环实验,并对它们的应变循环和应力循环特性进行比较.揭示和分析了应变幅值、平均应变及其历史对材料应变循环特性的影响以及应力幅值、平均应力及其历史对棘轮行为的影响.讨论了应变循环和应力循环间的交互作用以及不同热处理工艺下材料循环变形行为间的区别.研究发现材料的热处理工艺、平均应力和应力幅值及其历史对材料的棘轮行为都有很大的影响.得到了一些有助于进行合理本构描述的结果.  相似文献   

17.
Motivated by the distribution of non-linear relaxation (DNLR) approach, a phenomenological model is proposed in order to describe the cyclic plasticity behavior of metals under proportional and non-proportional loading paths with strain-controlled conditions. Such a model is based on the generalization of the Gibbs's relationship outside the equilibrium of uniform system and the use of the fluctuation theory to analyze the material dissipation due to its internal reorganization. The non-linear cyclic stress–strain behavior of metals notably under complex loading is of particular interest in this study. Since the hardening effects are described appropriately and implicitly by the model, thus, a host of inelastic behavior of metals under uniaxial and multiaxial cyclic loading paths are successfully predicted such as, Bauschinger, strain memory effects as well as additional hardening. After calibrating the model parameters for two metallic materials, the model has demonstrated obviously its ability to describe the cyclic elastic-inelastic behavior of the nickel base alloy Waspaloy and the stainless steel 316L. The model is then implemented in a commercial finite element code simulating the cyclic stress–strain response of a thin-walled tube specimen. The numerical responses are in good agreement with experimental results.  相似文献   

18.
Laboratory tests have been conducted to investigate the inelastic behaviour of aluminium alloy AA6060 T4 subjected to non-proportional cyclic loading. The results of four tests with variable strain path shapes and strain amplitudes are reported in this paper. The tests were carried out by applying combined axial force and torque to thin-walled tubular specimens, using effective strain amplitudes in the range 0.4–0.8%. Major emphasis has been put on the two important material properties: plastic anisotropy and influence of strain range and strain path shapes on cyclic hardening. A constitutive model for cyclic plasticity is used to predict the stress response of the alloy for the non-proportional strain paths applied in the experiments. The model adopts a quadratic yield function and multi-component non-linear isotropic and kinematic hardening rules to describe plastic anisotropy, the shape of the hysteresis loops and the evolution of cyclic hardening. Good agreement is obtained between the physical and correlated stress response of the alloy.  相似文献   

19.
In this part, the Khan–Huang–Liang (KHL) constitutive model was extended to account for kinematic hardening characteristic behavior of materials. The extended model is then generalized and used to simulate experimental response of oxygen free high conductivity (OFHC) copper under cyclic shear straining and biaxial tension–torsion (multiaxial ratchetting) experiments presented in Part I (Khan et al., 2007). In addition, a new modification for the non-linear kinematic hardening rule of Karim–Ohno (Abdel-Karim and Ohno, 2000) is proposed to simulate multiaxial ratchetting behaviors. Although, the kinematic hardening contributes the most to the response, it is shown that, the loading rate effect, and a coupled isotropic and kinematic hardening effect should also be considered while simulating the multiaxial ratchetting behavior of OFHC copper. Furthermore, the newly modified kinematic hardening rules is able to fairly well simulate the multiaxial ratchetting experiments under different loading conditions, irrespective of the value of applied axial tensile stress, shear strain amplitude, pre-cyclic hardening and/or loading sequence.  相似文献   

20.
304不锈钢室温单轴循环棘轮行为的粘塑性本构描述   总被引:3,自引:0,他引:3  
在统一粘塑性循环本构模型的框架下对循环硬化的304不锈钢的单轴棘轮行为进行了本构描述. 模型中通过随动硬化背应力演化和各向同性变形阻力演化对304不锈钢在非对称应力循环下的循环附加硬化和循环流动特性进行了分析, 同时考虑了加载历史对循环棘轮行为的影响. 将模型应用于304不锈钢室温单轴循环棘轮行为及其对加载历史依赖性的描述中, 预言结果与实验结果吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号