首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid–fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.  相似文献   

2.
For two-phase immiscible fluid flows a generalized Darcy's law is written in invariant tensor form for crystallographic point symmetry groups and anisotropic textures. The representation of the phase permeability coefficient tensors and the structure of the expressions for the relative phase permeabilities are analyzed for all symmetry groups. The relation between the phase and absolute permeability coefficient tensors is specified by a fourth-rank tensor with the external symmetry coinciding with external symmetry of the phase permeability tensors. It is shown that the external symmetry of the phase permeability coefficient tensors can differ from the external symmetry of the absolute permeability tensor. For triclinic and monoclinic symmetry groups it is shown that the phase permeability coefficient tensors may not be coaxial with each other and with the absolute permeability tensor; moreover, the directions of the principal axes of the phase permeability coefficient tensors can depend on the saturation.  相似文献   

3.
This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid–fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.  相似文献   

4.
Based on the Müller–Liu entropy principle and the axioms of constitutive theory, a continuum model for reacting ionic mixtures is presented. The influence of microscopic structure on the mixture dynamics is taken into account through the thermodynamics of polar materials. Moreover, mechanical balance laws for classical mixtures under influence of electromagnetic fields and quasi-electrostatic Maxwell’s equations are briefly shown. With an appropriate constitutive model for a diluted and isotropic mixture of non-volatile solutes and by considering the same temperature field for all constituents, constraints on constitutive quantities are imposed, and the conditions for the thermodynamic equilibrium are established from the entropy principle. Furthermore, the nonlinear nature of chemical reactions as well as the reciprocal nature of some irreversible processes is highlighted. Unlike the classical approach for electrolyte solutions, the current constitutive model incorporates thermoelectric and electro-kinetic phenomena into the phenomenological equations, providing a more comprehensive approach of electrolyte solutions dynamics.  相似文献   

5.
The Hugoniot curve relates the pressure and volume behind a shock wave, with the temperature having been eliminated. This paper studies the Hugoniot curve behind a propagating sharp interface between two material phases for a solid in which an impact-induced phase transition has taken place. For a solid capable of existing in only one phase, compressive impact produces a shock wave moving into material, say, at rest in an unstressed state at the ambient temperature. If the specimen can exist in either of two material phases, sufficiently severe impact may produce a disturbance with a two-wave structure: a shock wave in the low-pressure phase of the material, followed by a phase boundary separating the low- and high-pressure phases. We use a theory of phase transitions in thermoelastic materials to construct the Hugoniot curve behind the phase boundary in this two-wave circumstance. The kinetic relation controlling the evolution of the phase transition is an essential ingredient in this process.   相似文献   

6.
A complete and unified study of symmetries and anisotropies of classical and micropolar elasticity tensors is presented by virtue of a novel method based on a well-chosen complex vector basis and algebra of complex tensors. It is proved that every elasticity tensor has nothing but 1-fold, 2-fold, 3-fold, 4-fold and ∞-fold symmetry axes. From this fact it follows that the crystallographic symmetries plus the isotropic symmetry are complete in describing the symmetries of any kind of classical elasticity tensors and micropolar elasticity tensors. Further, it is proved that for each given integer m>>2 every classical Green elasticity tensor with an m-fold symmetry axis must have at least m elastic symmetry planes intersecting each other at this symmetry axis. From this fact and the aforementioned fact it follows that for all possible material symmetry groups, there exist only eight distinct symmetry classes for classical Green elasticity tensors, which correspond to the isotropy group and the seven crystal classes S 2, C 2h , D 2h , D 3d , D 4h , D 6h and O h , while it is shown that there exist twelve distinct symmetry classes for any other kind of elasticity tensors, including the classical Cauchy elasticity tensor and the micropolar elasticity tensors, which correspond to the eight subgroup classes just mentioned and the four crystal classes S 6, C 4h , C6h and T h . From these results, it turns out that all possible elasticity symmetry groups are nothing but the full orthogonal group, the transverse isotropy groups C h and D h , and the nine centrosymmetric crystallographic point groups except C 6h and D 6h . This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
This paper first presents the Eshelby tensors and stress concentration tensors for a spherical inhomogeneity with a graded shell embedded in an alien infinite matrix. The solution is then specialized to inhomogeneous inclusions in finite spherical domains with fixed displacement or traction-free boundary conditions. The Eshelby tensors in the infinite and finite domains and the stress concentration tensors are especially useful for solving many problems in mechanics and materials science. This is demonstrated on two examples. In the first example, the strain distributions in core-shell nanoparticles with eigenstrains induced by lattice mismatches are calculated using the Eshelby tensors in the finite domains. In the second example, the Eshelby and stress concentration tensors in the three-phase configuration are used to formulate the generalized self-consistent prediction of the effective moduli of composites containing spherical particles within the framework of the equivalent inclusion method. The advantage of this micromechanical scheme is that, whilst its predictions are almost identical to the classical generalized self-consistent method and the third-order approximation, the expressions for the effective moduli have simple closed forms.  相似文献   

8.
The form of the equilibrium effective stress acting on the solid phase of a porous medium containing two immiscible fluid phases is derived. The derivation makes use of the postulation of the thermodynamics of the system at the macroscale, a scale on the order of tens of pore diameters. The postulation at this scale facilitates the identification of the fraction of the solid surface in contact with each fluid phase as being the appropriate coefficient weighting each of the fluid phase pressures analogous to the Bishop parameter. In addition, the curvature of the surface of the solid phases is shown to impact the pressure exerted on the solid phase by the fluid. For the special case of low saturations when the wetting phase may be considered to be present only as a film on the solid phase, the macroscale disjoining pressure is found to modify the equilibrium form of the effective stress. In addition to the equilibrium effective stress, which is related to the forces acting on the interface between the solid phase and the fluids, the appropriate relation between the fluid pressures at the fluid–fluid interface is obtained. This analysis leads to the expression for the capillary pressure as a function of the phase pressures and the disjoining pressure.  相似文献   

9.
10.
11.
12.
Based on a local examination of the phase transition front, a macroscopic second order tensor describing the thermodynamic force for the phase transformation is proposed. Consequently, an associated thermodynamic flux is introduced. These tensorial variables are embedded into a material law which describes the behavior of steels during the austenite–martensite phase transformation. The material law is implemented into a finite element formulation. Homogeneous tests in pure tension/compression and torsion are performed to verify the behavior of the material law. Due to the independent modeling of the behavior of the phases, the influence of the yield stress of the austenite on the transformation kinetics can be verified. A classical example is presented to show the ability of the model to calculate large structural problems.  相似文献   

13.
By extending and developing the characteristic notion of the classical linear elasticity initiated by Lord Kelvin, a new type of representation for classical and micropolar anisotropic elasticity tensors is introduced. The new representation provides general expressions for characteristic forms of the two kinds of elasticity tensors under the material symmetry restriction and has many properties of physical and mathematical significance. For all types of material symmetries of interest, such new representations are constructed explicitly in terms of certain invariant constants and unit vectors in directions of material symmetry axes and hence they furnish invariants which can completely characterize the classical and micropolar linear elasticities. The results given are shown to be useful. In the case of classical elasticity, the spectral properties disclosed by our results are consistent with those given by similar established results.  相似文献   

14.
The Kelvin approach describing the structure of the generalized Hooke’s law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.  相似文献   

15.
A general procedure to derive the Gibbs equation for rheological bodies is presented. The method is based on the ideas originally developed by Clausius, Gibbs, Planck, Born, Prigogine etc. To make the procedure clear, it is firstly applied to classical media, like elastic solids, one component fluids, systems in electromagnetic fields, diffusing and (or) chemically reacting mixtures. The procedure is thereafter extended to viscoelastic bodies. As illustrations, the Maxwell solid, the Kelvin-Voight solid, the (non) linear standard solid as well as a generalized Maxwell medium are considered. Finally, the theory is used to calculate the creep rate of a Mg alloy submitted to an uni-axial stress. A reasonably good fit with the experimental data is obtained.  相似文献   

16.
Thixotropic materials are widely used in a variety of industrial applications. The constitutive relations to describe these materials are based on one-dimensional experiments in which the material is subjected to a shear motion and there is no unique methodology to obtain proper three-dimensional models. The path towards generalization to a three-dimensional framework is invariably carried out in a ad hoc manner. Here we propose a three-dimensional model that stems from a general thermodynamic framework that has proved to be quite robust in the development of constitutive relations, namely the application of the second law of thermodynamics together with the maximization of the entropy production. This leads to a constitutive equation that has the same form of a generalized Upper Convected Maxwell equation, if we require that changes of microstructure due to the deformation of each Maxwell element that comprises the model are reversible. Changes in microstructure are governed by a potential that is a measure of the difference between the current structure and the equilibrium structure associated with it. The equilibrium structure associated with the current structure is determined by the current value of stress, considered the main break up agent. We assume that the state of equilibrium would be achieved in a Motion With Constant Stress History, starting from the current stress state, until a steady state where the kinematics is not changing.  相似文献   

17.
各向同性率无关材料本构关系的不变性表示   总被引:2,自引:1,他引:1  
陈明祥 《力学学报》2008,40(5):629-635
在内变量理论的框架下,针对各向同性率无关材料,使用张量函数表示理论建立了塑性应变全量及增量本构关系的最一般的张量不变性表示. 它们均由3个完备不可约的基张量组合构成,这3个基张量分别是应力的零次幂、一次幂和二次幂. 因此得出,塑性应变、塑性应变增量与应力三者共主轴. 通过对基张量的正交化,给出了本构关系式在主应力空间中的几何解释. 进一步,全量(或增量)本构关系中3个组合因子被表达为应力、塑性应变(或塑性应变增量)的不变量的函数. 当塑性应变(或塑性应变增量)的3个不变量之间满足一定关系时,所给出的本构关系将退化为经典的形变理论(或塑性势理论).最后,还讨论它与奇异屈服面理论的关系,当满足一定条件时,两者是一致的.   相似文献   

18.
This paper uses the thermodynamic data of aqueous solutions of uncrosslinked poly(N-isopropylacrylamide) (PNIPAM) to study the phase transition of PNIPAM hydrogels. At a low temperature, uncrosslinked PNIPAM can be dissolved in water and form a homogenous liquid solution. When the temperature is increased, the solution separates into two liquid phases with different concentrations of the polymer. Covalently crosslinked PNIPAM, however, does not dissolve in water, but can imbibe water and form a hydrogel. When the temperature is changed, the hydrogel undergoes a phase transition: the amount of water in the hydrogel in equilibrium changes with temperature discontinuously. While the aqueous solution is a liquid and cannot sustain any nonhydrostatic stress in equilibrium, the hydrogel is a solid and can sustain nonhydrostatic stress in equilibrium. The nonhydrostatic stress can markedly affect various aspects of the phase transition in the hydrogel. We adopt the Flory-Rehner model, and show that the interaction parameter as a function of temperature and concentration obtained from the PNIPAM-water solution can be used to analyze diverse phenomena associated with the phase transition of the PNIPAM hydrogel. We analyze free swelling, uniaxially and biaxially constrained swelling of a hydrogel, swelling of a core-shell structure, and coexistent phases in a rod. The analysis is related to available experimental observations. Also outlined is a general theory of coexistent phases undergoing inhomogeneous deformation.  相似文献   

19.
Following Ogden, a class of objective (Lagrangian and Eulerian) tensors is identified among the second-rank tensors characterizing continuum deformation, but a more general definition of objectivity than that used by Ogden is introduced. Time rates of tensors are determined using convective rates. Sufficient conditions of objectivity are obtained for convective rates of objective tensors. Objective convective rates of strain tensors are used to introduce pairs of symmetric stress and strain tensors conjugate in a generalized sense. The classical definitions of conjugate Lagrangian (after Hill) and Eulerian (after Xiao et al.) stress and strain tensors are particular cases of the definition of conjugacy of stress and strain tensors in the generalized sense used in the present paper. Pairs of objective stress and strain tensors conjugate in the generalized sense are used to formulate constitutive relations for a hyperelastic medium. A family of objective generalized strain tensors is introduced, which is broader than Hill’s family of strain tensors. The basic forms of the hyperelastic constitutive relations are obtained with the aid of pairs of Lagrangian stress and strain tensors conjugate after Hill (the strain tensors in these pairs belong to the family of generalized strain tensors). A method is presented for generating reduced forms of the constitutive relations with the aid of pairs of Lagrangian and Eulerian stress and strain tensors conjugate in the generalized sense which are obtained from pairs of Lagrangian tensors conjugate after Hill by mapping tensor fields on one configuration of a deformable body to tensor fields on another configuration.   相似文献   

20.
The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke’s law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号