首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A numerical strategy for vibrations of elasto-plastic beams with rigid-body degrees-of-freedom is presented. Beams vibrating in the small-strain regime are considered. Special emphasis is laid upon the development of plastic zones. An elasto-plastic beam performing plane rotatory motions about a fixed hinged end is used as example problem. Emphasis is laid upon the coupling between the vibrations and the rigid body rotation of the pendulum. Plastic strains are treated as eigenstrains acting in the elastic background structure. The formulation leads to a non-linear system of differential algebraic equations which is solved by means of the Runge-Kutta midpoint rule. A low dimension of this system is obtained by splitting the flexural vibrations into a quasi-static and a dynamic part. Plastic strains are computed by means of an iterative procedure tailored for the Runge-Kutta midpoint rule. The numerical results demonstrate the decay of the vibration amplitude due to plasticity and the development of plastic zones. The pendulum approaches a state of plastic shake-down after sufficient time.  相似文献   

2.
In this paper we investigate the dynamics of tuned mass absorber with additional viscous damper and inerter attached to the pendulum. The devices are used to damp out oscillations of non-linear Duffing oscillator. Analysis of how these devices influence the dynamics of tuned mass absorber and its damping properties is shown. We calculate the detailed bifurcation diagrams and show how by changing the parameters of damper and inerter one can eliminate dangerous dynamic instabilities from the systems. Finally, in the last section we present an optimization of TMA׳s parameters in order to achieve best efficiency in damping of the main body vibrations.  相似文献   

3.
An asymptotically correct beam model is obtained for a long, thin-walled, circular tube with circumferentially uniform stiffness (CUS) and made of generally anisotropic materials. By virtue of its special geometry certain small parameters cause unusual non-linear phenomena, such as the Brazier effect, to be exhibited. The model is constructed without ad hoc approximations from 3D elasticity by deriving its strain energy functional in terms of generalized 1D strains corresponding to extension, bending, and torsion. Large displacement and rotation are allowed but strain is assumed to be small. Closed-form expressions are provided for the 3D non-linear warping and stress fields, the 1D non-linear stiffness matrix and the bending moment–curvature relationship. In bending, failure could be caused by limit-moment instability, local buckling or material failure of a ply. A procedure to determine the failure load is provided based on the non-linear response, neglecting micro-mechanical failure modes, post-failure behavior, and hygrothermal effects. Asymptotic considerations lead to the neglect of local shell interlaminar and transverse shear stresses for the thin-walled configuration. Results of the theory are illustrated for a few symmetric, antisymmetric angle-ply and unsymmetric layups and show that some previously published theories are not asymptotically correct.  相似文献   

4.
《Comptes Rendus Mecanique》2019,347(12):903-911
This paper presents a study of the vibratory behaviour of a flexible workpiece subject to a milling end operation. Indeed, this vibratory behaviour is critical, especially when the excitation frequency is near to the resonance. For this reason, passive vibration suppression is considered in order to attenuate the dynamic response of the milled workpiece and decrease the dynamic effect on the resulting machined surface roughness and flatness. In order to confirm the efficiency of the passive vibration suppression, the vibratory behaviour and the quality (roughness and flatness) of a machined surface are studied without and with passive absorber (TMD) using a finite-element model.  相似文献   

5.
In this paper the non-linear analysis of a composite Timoshenko beam with arbitrary variable cross section undergoing moderate large deflections under general boundary conditions is presented employing the analog equation method (AEM), a BEM-based method. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the AEM. Application of the boundary element technique yields a system of non-linear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples are worked out to illustrate the efficiency, the accuracy, the range of applications of the developed method and the influence of the shear deformation effect.  相似文献   

6.
A special perturbation technique, employing several independent perturbation parameters, is outlined in general terms. The procedure is then illustrated with reference to multiple-parameter non-linear stability problems of a conservative structural field. Successive approximations to the associated stability boundary are obtained in parametric form. This is equivalent to the general mathematical problem of locating the points on a non-linear surface at which points the Hessian of a potential function vanishes. Such a problem can arise in relation to other branches of mechanics and applied mathematics and the technique described in this paper is readily applicable. A shallow circular arch subjected to combined uniform pressure and concentrated load at the apex is analysed for illustration.  相似文献   

7.
In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied.  相似文献   

8.
Summary A system is described for experimentally analysing non-linear waves to a high degree of accuracy. The system has been used in conjunction with aWeissenberg rheogoniometer and some specimen results are presented on a complex soap-based grease, a synthetic dye based grease and a polymer solution.  相似文献   

9.
This paper is concerned with the methods of non-linear analysis of dynamical systems and the associated bifurcation and stability problems. Attention is focused on the intrinsic harmonic balancing (IHB) technique, and the interrelationship between this technique and the methods of normal forms and averaging. Recent improvements and a complex formulation of the technique, which facilitates comparisons with other methods, are described. Thus, it is demonstrated that the simplified equations of an autonomous system, obtained by both the IHB and averaging techniques are identical, and these equations are, in fact, normal forms. Hilbert's 16th problem is analyzed as an illustrative example. It is observed that the IHB technique lends itself to a symbolic computer language (MAPLE) more efficiently compared to other methods; furthermore, its efficiency increases with the complexity of the system analyzed.  相似文献   

10.
In the present part of the paper various problems of non-linear dynamics of nano-beams within the modified couple stress theory as well as the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson models are studied taking into account the geometric non-linearity. Different characteristics of the vibrational process, including Fourier spectra, wavelet spectra, phase portraits, Poincaré maps as well as the largest Lyapunov exponents, are studied for the same physical-geometric parameter with and without consideration of the size-dependent behaviour. Vibration graphs are constructed and analysed, and scenarios of transition from regular to chaotic vibrations are illustrated and discussed.  相似文献   

11.
The behaviour of a system containing a mass traveling on a cantilever beam is considered. The mass is induced to move by an applied force as opposed to the case which has been considered in most literature where the position of the moving mass is assumed to be known and independent of the motion of the beam. Furthermore, the system to be discussed has the unique characteristic that the motions of the mass and the beam are coupled. The mathematical model of the system includes two coupled nonlinear integral/partial differential equations which are impossible to solve analytically and are difficult to solve numerically in their original form. As a remedy, the solution is discretized into space and time functions and the equations of motion are reduced to a set of ordinary differential equations. The shape function is chosen so that it satisfies the boundary conditions of the beam as well as the transient conditions imposed by the traveling mass. This choice of the shape function, which considers the mass-beam interaction, provides an improvement over the conventional method of using a simple cantilever beam mode shapes.The ordinary differential equations of motion using the improved shaped functions, are solved numerically to obtain the dynamic behaviour of the system. The results illustrate the validity of the model, and demonstrate the advantages of the improved model to the un-improved equations.  相似文献   

12.
Local-velocity feedback (LVF) and linear-quadratic Gaussain (LQG) control schemes are implemented on passively tuned reaction mass actuators to control the vibrations of a flexible structure. The structure is lightly damped and possesses closely coupled low-frequency resonant modes. Both LVF and LQG controllers successfully eliminate the structure's vibrations. However, if the passive tuning parameters of the actuators are slightly mistuned, implementing LVF control actually results in an unstable system. On the other hand, LQG control proves to be insensitive to large changes in the passive tuning parameters of the actuators. In fact, the system with LQG control is never unstable, no matter what the actuator's passive tuning parameters are.  相似文献   

13.
We investigate analytically and experimentally the effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers (CPVAs), which are used to reduce torsional vibrations in rotating machinery. The analysis is based on perturbation methods applied to the nonlinear equations of motion for a rotor subjected to an engine order applied torque and equipped with a circular path CPVA with viscous and Coulomb damping. The experimental work is based on quantifying parameters for the damping model using free vibration measurements with a viscous and Coulomb damping identification scheme that is enhanced to better handle measurement noise, and running tests for steady-state operation under a range of loading conditions. The level of Coulomb damping is varied by adjusting the friction of the absorber connection bearing. Good agreement is found between the analytical predictions and the experimental data. It is shown that the absorber sticks up to a level of excitation that allows it to release, after which the Coulomb damping acts in the expected manner, resulting in lowered response amplitudes. The results obtained are of general use in assessing absorber performance when dry friction is present in absorber suspensions.  相似文献   

14.
The effect of dynamical self-orientation and its applicability for the identification of natural frequencies of the investigated systems is demonstrated in this paper. Unidirectional vibration exciter is fixed to the investigated systems via a pivot link and can rotate around it. It is shown that the exciter changes its orientation in the steady state motion mode when the frequency of excitation sweeps over the fundamental frequency of the examined system. Approximate analytical analysis of the discrete system illustrates the basic principle of the effect of dynamical self-orientation. Numerical analysis of both the discrete and different continuous elastic systems confirms the applicability of the effect of self-orientation for the identification of natural frequencies.  相似文献   

15.
The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.  相似文献   

16.
张林  金延伟 《应用力学学报》2012,29(3):307-309,355
为验证无人机伞降回收系统的直降式滑橇着陆装置的动力学性能,对其着陆缓冲过程进行数学模拟构造了该装置的动力学模型,通过数值求解得出了该装置缓冲过程的动态特性。对其着陆压缩过程的动力学模型进行了简化,计算结果可用于减震器参数的确定。落震试验结果表明:动力学模型能准确模拟着陆装置的缓冲过程;以5m/s着陆时过载仅为6.8g;本文所采用动力学模型的数值求解结果与实验结果一致,误差小于5%。  相似文献   

17.
In this paper, a new approach for dynamic analysis of the flexible multibody manipulator systems is described. The organization of the computer implementations which are used to automatically construct and numerically solve the system of loosely coupled dynamic equations expressed in terms of the absolute, joint and elastic coordinates is discussed. The main processor source code consists of three main modules: constraint module, mass module and force module. The constraint module is used to numerically evaluate the relationship between the absolute and joint accelerations. The mass module is used to numerically evaluate the system mass matrix as well as the non-linear Coriolis and centrifugal forces associated with the absolute, joint and elastic coordinates. At the same time, the force module is used to numerically evaluate the generalized external and elastic forces associated with the absolute, joint and elastic coordinates. Computational efficiency is achieved by taking advantage of the structure of the resulting system of loosely coupled equations. The absolute, joint and elastic accelerations are integrated forward in time using direct numerical integration methods. The absolute positions and velocities can then be determined using the kinematic relationships. The flexible 2-DOF double-pendulum and spatial manipulator systems are used as illustrated examples to demonstrate and verify the application of the computational procedures discussed in this paper.  相似文献   

18.
This paper deals with the experimental analysis of the long-term behaviour of periodically excited linear beams supported by a one-sided spring or an elastic stop. Numerical analysis of the beams showed subharmonic, quasi-periodic and chaotic behaviour. Furthermore, in the beam system with the one-sided spring three different routes leading to chaos were found. Because of the relative simplicity of the beam systems and the variety of calculated nonlinear phenomena, experimental setups are made of the beam systems to verify the numerical results. The experimental results correspond very well with the numerical results as far as the subharmonic behaviour is concerned. Measured chaotic behaviour is proved to be chaotic by calculating Lyapunov exponents of experimental data.
Sommario Il presente lavoro concerne l'analisi sperimentale del comportamento a regime di travi lineari, su supporti elastici nonlineari discontinui, eccitate periodicamente. L'analisi numerica dei sistemi in esame ha evidenziato risposte subarmoniche, quasi-periodiche e caotiche, nonchè l'esistenza, nel caso di trave con una molla laterale, di tre differenti percorsi verso il caos. La relativa semplicità dei sistemi di travi ha consentito di procedere ad una verifica sperimentale dei risultati numerici e della varietà dei fenomeni nonlineari da essi evidenziati. La corrispondenza fra risultati sperimentali e numerici è molto buona nel caso di risposta subarmonica. Il comportamento caotico sperimentale è stato convalidato attraverso il calcolo degli esponenti di Lyapunov a partire dai relativi dati.
  相似文献   

19.
Flexible solid-state battery has several unique characteristics including high flexibility, easy portability, and high safety, which may have broad application prospects in new technology products such as rollup displays, power implantable medical devices, and wearable equipments. The interfacial mechanical and electrochemical problems caused by bending deformation, resulting in the battery damage and failure, are particularly interesting. Herein, a fully coupled electro-chemo-mechanical model i...  相似文献   

20.
The influence of load biaxiality on the stress field and fracture behavior of a cracked plate is investigated. Considered is a square plate containing a central through the thickness crack and subjected to a biaxial loading perpendicular and parallel to the crack plane. The stress field of the plate is analyzed by a finite element code based on incremental plasticity and the von Mises yield condition. A method based on the strain energy density theory is used to determine the critical stress for crack initiation. It was found that the equi-biaxial loading mode induces the smallest plastic zones, while the critical applied stress for crack initiation becomes maximum. Quite the contrary happens for the shear loading system which causes the largest plastic zones and the minimum applied stress values fro crack growth. Results showing the dependence of the above quantities on the biaxiality of the applied stress are presented in graphical form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号