首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of at least one solution of the following multi-point boundary value problem
$ \left\{ \begin{gathered} [\varphi (x'(t))]' = f(t,x(t),x'(t)),t \in (0,1), \hfill \\ x(0) - \sum\limits_{i = 1}^m {\alpha _i x'(\xi _i ) = 0,} \hfill \\ x'(1) - \sum\limits_{i = 1}^m {\beta _i x(\xi _i ) = 0} \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} [\varphi (x'(t))]' = f(t,x(t),x'(t)),t \in (0,1), \hfill \\ x(0) - \sum\limits_{i = 1}^m {\alpha _i x'(\xi _i ) = 0,} \hfill \\ x'(1) - \sum\limits_{i = 1}^m {\beta _i x(\xi _i ) = 0} \hfill \\ \end{gathered} \right.   相似文献   

2.
Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance
$\begin{gathered} x^{(n)} (t) = f(t,x(t),x'(t),...,x^{(n - 1)} (t)),t \in (0,1), \hfill \\ x(0) = \sum\limits_{i = 1}^m {a_i x(\xi _i ),x'(0) = ... = x^{(n - 2)} (0) = 0,x^{(n - 1)} (1) = } \sum\limits_{j = 1}^l {\beta _j x^{(n - 1)} (\eta _j )} , \hfill \\ \end{gathered} $\begin{gathered} x^{(n)} (t) = f(t,x(t),x'(t),...,x^{(n - 1)} (t)),t \in (0,1), \hfill \\ x(0) = \sum\limits_{i = 1}^m {a_i x(\xi _i ),x'(0) = ... = x^{(n - 2)} (0) = 0,x^{(n - 1)} (1) = } \sum\limits_{j = 1}^l {\beta _j x^{(n - 1)} (\eta _j )} , \hfill \\ \end{gathered}   相似文献   

3.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

4.
This paper deals with the periodic boundary value problem for nonlinear impulsive functional differential equation
$ \left\{ \begin{gathered} x'(t) = f(t,x(t),x(\alpha _1 (t)),...,x(\alpha _n (t)))fora.e.t \in [0,T], \hfill \\ \Delta x(t_k ) = I_k (x(t_k )),k = 1,...,m, \hfill \\ x(0) = x(T). \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} x'(t) = f(t,x(t),x(\alpha _1 (t)),...,x(\alpha _n (t)))fora.e.t \in [0,T], \hfill \\ \Delta x(t_k ) = I_k (x(t_k )),k = 1,...,m, \hfill \\ x(0) = x(T). \hfill \\ \end{gathered} \right.   相似文献   

5.
We consider the first-order Cauchy problem
$ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered} $ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered}   相似文献   

6.
In this paper, convex solutions for the second type of Feigenbaum’s equation f (x) = λ1 f (f (λx)), 0 < λ < 1, f (0) = 1, 0 f (x) 1, x ∈ [0, 1] are investigated. Using constructive methods, we discuss the existence and uniqueness of continuous convex solutions, C1-convex solutions and C2-convex solutions of the above equation.  相似文献   

7.
We consider the three dimensional Cauchy problem for the Laplace equation uxx(x,y,z)+ uyy(x,y,z)+ uzz(x,y,z) = 0, x ∈ R,y ∈ R,0 z ≤ 1, u(x,y,0) = g(x,y), x ∈ R,y ∈ R, uz(x,y,0) = 0, x ∈ R,y ∈ R, where the data is given at z = 0 and a solution is sought in the region x,y ∈ R,0 z 1. The problem is ill-posed, the solution (if it exists) doesn't depend continuously on the initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet approximate solution. Furthermore, we shall give a recipe for choosing the coarse level resolution.  相似文献   

8.
Conditions for the oscillation of all solutions and for the existence of nonoscillatory solutions with polynomial growth at infinity are given for the system of differential-functional equations of neutral type
  相似文献   

9.
The combinatorial identity
is established with the help of the differentiation of the convolution of some function with the sine function. Bibliography: 5 titles. __________ Translated from Problemy Matematicheskogo Analiza, No. 36, 2007, pp. 65–67.  相似文献   

10.
具时滞的奇异(n-1,1)共轭边值问题的多重正解   总被引:2,自引:0,他引:2  
Abstract. This paper discusses the singular (n-l, 1) conjugate boundary value problem as fol-lows by using a fixed point index theorem in cones  相似文献   

11.
In this paper we consider a class of nonlinear elliptic problems of the type
$ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right.   相似文献   

12.
Exact solutions are obtained for the first time for the half-space boundary-value problem for the vector model kinetic equations
0, \mathop {\lim }\limits_{x \to + 0} \Psi (x,\mu ) = {\rm A}, \mu< 0, \hfill \\ \end{gathered}$$ " align="middle" vspace="20%" border="0">  相似文献   

13.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

14.
In this paper we deal with the four-point singular boundary value problem
$ \left\{ \begin{gathered} (\phi _p (u'(t)))' + q(t)f(t,u(t),u'(t),u'(t)) = 0,t \in (0,1), \hfill \\ u'(0) - \alpha u(\xi ) = 0,u'(1) + \beta u(\eta ) = 0, \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} (\phi _p (u'(t)))' + q(t)f(t,u(t),u'(t),u'(t)) = 0,t \in (0,1), \hfill \\ u'(0) - \alpha u(\xi ) = 0,u'(1) + \beta u(\eta ) = 0, \hfill \\ \end{gathered} \right.   相似文献   

15.
It is proved that the boundary-value problem
, has a solution, provided that the following conditions are fulfilled:
, and, for ϕ(u) ≡ 0, the Galerkin method converges in the norm of the space H1(a, b; a). Several theorems of a similar kind are presented. Bibliography: 4 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 334, 2006, pp. 246–266.  相似文献   

16.
The solvability of the nonlocal boundary value problem
in a class of functions is investigated for a quasilinear parabolic equation. The solution uniqueness follows from the maximum principle.  相似文献   

17.
In this paper, we consider a linearly elastic shell, i.e. a three-dimensional linearly elastic body with a small thickness denoted by 2ε, which is clamped along its part of the lateral boundary and subjected to the regular loads. In the linear case, one can use the two-dimensional models of Ciarlet or Koiter to calculate the displacement for the shell. Some error estimates between the approximate solution of these models and the three-dimensional displacement vector field of a flexural or membrane shell have been obtained. Here we give a new model for a linear and nonlinear shell, prove that there exists a unique solution U of the two-dimensional variational problem and construct a three-dimensional approximate solutions UKT(x,ξ) in terms of U: We also provide the error estimates between our model and the three-dimensional displacement vector field :‖u-UKT‖1,Ω≤C∈r,r=3/2, an elliptic membrane, r = 1/2, a general membrane, where C is a constant dependent only upon the data‖u‖3,Ω,‖UKT‖3,Ω,θ.  相似文献   

18.
Let u = (u n ) be a sequence of real numbers whose generator sequence is Cesàro summable to a finite number. We prove that (u n ) is slowly oscillating if the sequence of Cesàro means of (ω n (m−1)(u)) is increasing and the following two conditions are hold:
$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}  相似文献   

19.
It is shown that an infinite-dimensional dynamical system of the form
studied for sufficiently small r 1, s 1, R k , and S k in the preceding part of this work [Contemporary Mathematics and Its Applications, Vol. 2. Partial Differential Equations (2003), pp. 22–49] describes the evolution of the free boundary in the problem of the Hele-Shaw flow in the case where the pressure is constant on the free boundary (Leibenson condition). __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 24, Dynamical Systems and Optimization, 2005.  相似文献   

20.
Ibαf ( x) =∫R ∏mj=1( bj( x) - bj( y) ) 1| x - y| n-αf ( y) dyare considered.The following priori estimates are proved.For 1 01Φ1t| {y∈Rn:| Ibαf( y) | >t}| 1q ≤csupt>01Φ1t| {y∈Rn:ML( log L) 1r ,α(‖b‖f ) ( y) >t}| 1q,where‖b‖=∏mj=1‖bj‖Oscexp Lrj,Φ( t) =t( 1 + log+t) 1r,1r =1r1+ ...+ 1rm,ML(…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号