首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper details the use of cholesterol as a mobile phase additive and stationary phase complexing agent in reversed-phase liquid chromatography. Cholesterol loading onto a typical C18 stationary phase is examined. It is found that, when using a standard 150 mm × 4.6 mm column, between 5.0 and 50.0 mg of cholesterol can be loaded by choosing appropriate values of mobile phase composition and cholesterol concentration. Adding cholesterol to the stationary phase is shown to have an effect on shape and phenyl selectivities, but not on methylene selectivity. Most notably, selectivity of triphenylene and o-terphenyl is increased from 1.08 to 1.49 by adding cholesterol to the chromatographic system. Phenyl-group selectivity shows a more modest but real increase in selectivity as well. Cholesterol-loaded stationary phases are demonstrated to be stable after cholesterol is removed from the mobile phase, for at least 250 column volumes, when mobile phases of 70% methanol or less are used.  相似文献   

2.
A study was performed to assess the performance of aminoacids immobilized on carbon nanotubes (CNTs) for their employment as a sorbent for solid phase extraction systems. An immobilization method is introduced and the aminoacid l-tyrosine was chosen as a case study. A spectrophotometric study revealed the amount of aminoacid immobilizated on CNTs surface, and it turned to be of 3174 μmol of l-tyr g−1. The material was tested for Co retention using a minicolumn inserted in a flow system. At pH 7.0, the amount of Co retained by the column was of 37.58 ± 3.06 μmol Co g−1 of CNTs. A 10% (v/v) HNO3 solution was chosen as eluent. The pH study revealed that Co binding increased at elevated pH values. The calculation of the mol ratio (moles of Co bound at pH 9 to moles of l-tyr) turned to be 3:1. The retention capacity was compared to other bivalent cations and showed the following tendency: Cu2+ > Ni2+ > Zn2+ ? Co2+. The analytical performance was evaluated and an enrichment factor of 180 was obtained when 10 mL of 11.37 μg L−1 Co solution was loaded onto the column at pH 9.0; reaching a limit of detection (LoD) of 50 ng L−1. The proposed system was successfully applied to Co determination in QC-LL2 standard reference material (metals in natural water).  相似文献   

3.
Dynamic binding capacity (DBC) of commercial metal-chelate methacrylate monolith-convective interaction media (CIM) was performed with commercial human immunoglobulin G (IgG) (Cohn fraction II, III). Monoliths are an attractive stationary phase for purification of large biomolecules because they exhibit very low back pressure even at high flow rates and flow-unaffected binding properties. Adsorption of IgG onto CIM-IDA disk immobilized with Cu2+, Ni2+ and Zn2+ were studied with Tris-acetate (TA), phosphate-acetate (PA) and MMA (MES, MOPS and acetate) buffer systems at different flow rates. Adsorption and elution of IgG varied with different buffers and adsorption of IgG was maximum with MMA buffer. Adsorption of human IgG from Cohn fractions (II, III) was high when Cu2+ was used as ligand. CIM-IDA disk showed dynamic binding capacity in the range of 14–16 mg/ml with Cu2+ and 7–9 mg/ml with Ni2+ for human IgG with MMA buffer. In the case of CIM-IDA-Zn2+ column, the binding capacity was only about 0.5 mg/ml of support. Different desorption strategies like lowering of pH and increasing of competitive agent were also studied to achieve maximum recovery. Chromatographic runs with human serum and mouse ascites fluid were also carried out with metal chelate methacrylate monolithic disk and the results indicate the potential of this technique for polyclonal human IgG and monoclonal IgG purification from complex biological samples.  相似文献   

4.
A new on-line cloud point extraction (CPE) system coupled to ICP-OES was designed for simultaneous extraction, preconcentration and determination of Cd2+, Co2+, Cr3+, Cu2+, Fe3+ and Mn2+ ions in water samples. This is based on the complexation of the metal ions with 1-(2-thenoyl)-3,3,3-trifluoraceton reagent (TTA) at pH 6.0 in the presence of non-ionic surfactant of Triton X-114. The micellar solution was heated above 60 °C and loaded through a column packed with cotton, which acts as a filter for retaining the analyte-entrapped surfactant-rich phase. Then the surfactant-rich phase was eluted using propanol:0.5 mol L−1 nitric acid solution (75:25, v/v) at a flow rate of 3.0 mL min−1 and directly introduced into the nebulizer of the ICP-OES. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method for target ions were between 42 and 97, the detection limits (DLs) were in the range of 0.1-2.2 μg L−1. The relative standard deviations (R.S.D.s) at 100 μg L−1 concentration levels of each ion were found to be less than 4.6%. Also, the calibration graphs were linear in the range of 0.5-100 μg L−1 with the correlation coefficients within the range of 0.9948-0.9994.Finally, the developed method was successfully applied to the extraction and determination of the mentioned metal ions in the tap, well, sea and mineral water samples and satisfactory results were obtained.  相似文献   

5.
Hashemi P  Bagheri S  Fat'hi MR 《Talanta》2005,68(1):72-78
An agarose-based anion exchanger (Q-Sepharose) was loaded with chromotropic acid (CTA) and used for column preconcentration and determination of copper by flame AAS. Preliminary experiments indicated that a sample pH of 5.7-6.5 is best suited for accumulation of copper and a 2.5 ml portion of a 0.02 mol l−1 HCl solution can efficiently desorb the analyte from the column. An incomplete factorial design was used for optimization of five different variables that affect recovery of copper. The results indicated that ionic strength, pH and sample volume variables are the most important effects, respectively. Hence, these variables and their possible interactions were studied more carefully. In optimized conditions, the column could tolerate up to 0.18 mol l−1 sodium nitrate in the matrix. A 5 ml portion of a 0.02 mol l−1 CTA was sufficient for loading of a 0.5 ml column prior to preconcentration of copper from a 150 ml sample solution. Matrix ions of Ca2+, Mg2+, Na+ and K+ and potentially interfering ions of Pb2+, Ni2+, Cd2+, Co2+, Zn2+ and Mn2+ with relatively high concentrations did not have any significant effect on the recovery of the analyte. A preconcentration factor of 60 and a detection limit of 1.0 μg l−1 was obtained for the determination of copper by the flame AAS method. A precision better than 2.5%, expressed as R.S.D., was also achieved. Application of the method to tap water and two different river water samples resulted in values well confirmed by direct determinations with ET-AAS.  相似文献   

6.
A series of mono- and heterodinuclear complexes of type MLnH2 and MLnM′ where M = CoIII, CrIII, ZnII and M′ = CuII, ZnII have been synthesized and characterized. The non-macrocyclic ligands LnH4 contain two geometrically distinct compartments, hexa- (N4O2) and tetradentate (O4) compartments which are bridged by phenolic oxygen atoms. The dinuclear complexes were prepared in stepwise reactions. The non-macrocyclic ligand showed a site specificity of metal ions upon the synthetic procedure. The results obtained reveals that in case of using ligand L2H4 only an isomer (trans-pyridines and cis-phenolates) among three possible geometrical isomers is formed. The metal site scrambling in the prepared complexes were not also observed in the reaction conditions used. The crystal structure of [CrIIIL2H2]ClO4 was determined and discussed.  相似文献   

7.
A series of complexes has been synthesized based on pyridine-2,6-dicarboxylate (L1) as the bridging ligand and 5-(4-bromophenyl)-2,4-bipyridine (L2) as the pendant with different metal ions such as NiII, CoII, and CuII, under hydrothermal conditions. In nickel and cobalt complexes [M(L1)(L2)2 · H2O]n (M = Ni2+ or Co2+), the metal ions are bridged by L1 to form 1D coordination zigzag polymeric chains with L2 pendants possessing hexa-coordinated distorted octahedral geometries. While the copper ions are penta-coordinated by L1 and L2 with distorted square pyramidal geometries forming the tetranuclear cluster with the formula [Cu4(L1)4(L2)4] · 2H2O. It has been found that both the structure and magnetic property of these complexes are metal ions dependent. Intramolecular antiferromagnetic interactions were observed in the nickel and cobalt 1D coordination polymers, while ferromagnetic coupling was found in the tetranuclear copper cluster. Density functional theory calculations suggested that the O–C–O bridges of L1 in a basal–apical mode are responsible for intracluster intermetallic ferromagnetic exchange for the tetranuclear copper cluster.  相似文献   

8.
The differential mode of complexation of chromogenic sensor 3 with Co2+ versus Ni2+ (or Cu2+) at pH 4.0 in water leads to new absorption bands at λmax 620 nm in the case of Co2+, at λmax 380 and 460 nm for Ni2+ and at λmax 460 nm for Cu2+. These differential responses allow sensor 3 to be used for the selective and quantitative estimation of Co2+ and Ni2+ or Co2+ and Cu2+ from their mixtures.  相似文献   

9.
Summary The separation of the D and L enantiomers of eighteen essential α amino acids has been investigated by ligand-exchange chromatography (LEC). The effect of column temperature on the retention times and resolution of individual amino acid enantiomers has been studied by varying the temperature from 25 to 50 °C for a mobile phase containing Cu2+ ions. By use of a temperature of 50 °C and Zn2+ in the mobile phase, eight of the eighteen amino acid enantiomers can be resolved sufficiently well for practical application. Only phenylalamine, tyrosine, and tryptophan can be separated by use of Ni2+ as complexation metal at 50 °C. LEC has been used to monitor the decarboxylation of racemic DL-aspartic acid byPseudomonas dacunhae. Analysis of DL amino acid enantiomers in different media was performed at column temperatures of 30 and 50°C by addition of 0.125 mM Cu2+ to the aqueous mobile phase. It was found that the analytical performance is most dependent on the identity of the metal used for complexation; the concentration of the metal was of secondary importance and the column temperature less important still.  相似文献   

10.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

11.
A heterocyclic hydrazone ligand, pyridine-2-carboxaldehyde-2-pyridylhydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Pd2+. The ligand HL, 1, undergoes 1:1 complexation with Pd2+ and Cu2+ to form complexes [Pd(L)Cl], 1a and [Cu(HL)Cl2], 1b respectively. The complex 1a gives a characteristic absorption peak at 536 nm with distinct reddish-pink coloration. The change in color can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in the presence of other metal ions (Na+, K+, Mg2+, Ca2+, Al3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+, Pb2+). The association constants, Kass (UV–Vis), were found to be 5.52 ± 0.004 × 104 for 1a and 4.94 ± 0.006 × 104 for 1b at 298 K. On excitation at 295 nm, the ligand HL, 1 strongly emits at 372 nm due to an intraligand 1(π–π) transition. Upon complexation the emission peaks are blue shifted (λex 295 nm, λem 358 nm for 1a and λex 295 nm, λem 367 nm for 1b) along with a quenching (F/F0 0.32 for 1a and 0.88 for 1b) in the emission intensity. DFT and TDDFT calculations were highly consistent with the spectroscopic behavior of the ligand and complexes. The molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies.  相似文献   

12.
A novel chelating ligand, 2,4-[bis-(2,4-dihydroxybenzylidene)]-dihydrazinoquinazoline (DBHQ), was synthesized, and the fluorescence characteristics of its complex with metal ions were investigated.Thirty-five different metal ions were tested for the emission of fluorescence in the presence of DBHQ in aqueous solutions in a pH range of 3.0-10.5 (at a difference of 0.5 for each metal).It was observed that DBHQ fluoresces intensely at 470 nm with an excitation wavelength of 405 nm in the presence of Ga3+ or Al3+ in the pH range 3.0-4.0. The other metal ions did not show fluorescence with DBHQ. Although the presence of Cu2+, Co2+ and Fe3+ decreased the fluorescence intensity of DBHQ-Ga3+, the addition of a fluoride ion (NaF) recovered the fluorescence by masking the interfering ions. In addition, the fluoride ions were found to enhance the sensitive determination of Ga3+ because the fluorescence intensity of DBHQ-Ga3+ was further increased approximately 2.5-fold in the presence of F (? = 0.658) from that in the absence of F (? = 0.401). The fluoride ions also masked the Al3+ ions, which emit fluorescence on chelation with DBHQ. Therefore, a selective and sensitive detection of Ga3+ was achieved by using DBHQ in the presence of F. The detection limit of Ga3+ was approximately 50 nmol L−1 (3.5 ppb). The proposed method was applicable to determine Ga3+ in river water.  相似文献   

13.
The stability and in vivo robustness of [177Lu]Lu–DOTP as a potential bone-targeting radiopharmaceutical was determined with the aid of thermodynamic blood plasma modeling simulations. Glass electrode potentiometry was employed to measure the stability constants of the complexes of Lu3+ with DOTP. Similarly, the complexes of DOTP with a selection of the important physiological metal ions: Ca2+, Mg2+, and Cu2+ were determined, representing the typical interactions that the ligand would encounter upon administration. This made possible the construction of a blood plasma model of DOTP, aiding in establishing the potential susceptibility of the radiopharmaceutical. The ligand binds predominantly to calcium in vivo, accounting for 59.6% of that initially introduced as a component of the Lu–DOTP complex. Furthermore, due to a preference of the DOTP to bind to Cu2+ it causes mobilization of the ions in blood plasma, and would therefore indicate a deficiency if the ligand is administered at a concentration of 8.5 × 10−5 mol dm−3. The lutetium-ions are preferentially bound to DOTP, with as much as 98.1% of the Lu3+ occupying the ligand under physiological conditions.  相似文献   

14.
Sorbent materials based on three thiacrown ethers, 1,4,7,10-tetrathiacyclododecane (12S4), 1,4,7,10,13-pentathiacyclopentadecane (15S5) and 1,4,7,10.13,16-hexathiacyclooctadecane (18S6) were prepared either by immobilizing the ligands into sol-gel (SG) matrix or coating on commercial solid phase extraction (SPE) column. SG sorbents were characterized by FT-IR, energy dispersive X-ray microanalysis (EDX) and thermogravimetric analysis/derivative thermogravimetric analysis (TGA/DTG). A marked thermal stability of the ligands when immobilized in sol-gel matrix was noted. The competitive sorption characteristics of a mixture of eleven metal ions (Mg2+, Zn2+, Cd2+, Co2+, Mn2+, Ca2+, Cu2+, Ni2+, Ag+, V4+, Hg2+) using: (i) batch method with ligands trapped in SG matrices, and (ii) off-line SPE column containing coated ligands were studied using ICP-MS. The extraction of metals were optimized for key parameters such as pH, contact time/flow rate, particle size (for SG sorbents) and ligand concentration. Under the optimized conditions, all the immobilized thiacrown ethers exhibited highest selectivity toward Ag+, with lesser responses to Hg2+ while the extraction of other metal ions were negligible. Among the SG sorbents, 18S6-SG offer the highest capacity and the best selectivity over Hg2+. However, for practical applications such as for selective isolation and preconcentration of Ag+, the SPE type especially based on 18S6 is preferred as analysis time and recoveries are favorable. The sorbents can be repeatedly used three times as there was no significant deterioration in the metal uptake (%E > 90%) or interference from other metal ions. The optimized procedures were successfully applied for the separation and preconcentration of traces Ag+ in different water samples.  相似文献   

15.
N-Acetyl-neuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-Neu5Ac synthetase), which catalyzes the formation of cytidine-5′-monophospho-N-acetyl-neuraminic acid (CMP-Neu5Ac) from cytidine-5′-triphosphate (CTP) and N-acetyl-neuraminic acid (Neu5Ac), was purified from rat brains aged 8-9 days, which presented the highest specific activity, and partially characterized. Partial protein fractionation in the crude extract was achieved by using 40-60% ammonium sulphate. Subsequently, CMP-Neu5Ac synthetase was purified by column chromatography on Sephacryl S-200 (gel filtration), Yellow-86-Agarose (affinity) and Phenyl-Sepharose (hydrophobic affinity). The pure enzyme had a specific activity of 3.6555 U/mg of protein and was purified 1662-fold, with an 18% yield. The purified CMP-Neu5Ac synthetase had a molecular weight of about 46 ± 1 kDa. Its purity was confirmed by sodium dodecyl sulphate and polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC). The active enzyme chromatographed on a gel filtration column at 190 kDa, suggesting it exists in its native form as a tetramer. The greatest activity of enzyme was observed a temperature of 40 °C for a period of 45 min of incubation, revealing a certain thermal stability. The enzyme was found to remain stable in the pH range 8.5-9.5 at 40 °C, specifically at pH 9.0 for a 45 min incubation period. The enzyme was blocked by thiol-modifying reagents and such heavy metal cations as Mn2+, Cu2+, Sn2+, Co2+, Zn2+ and Hg2+, but was not inhibited by thiol-containing reagents like reduced glutathione (GSH), mercaptoethanol and cysteine. Finally, in the presence of 0.01 M of dithiothreitol (DTT) or 0.06 M of NaF, the enzyme showed activity losses of approximately 20 and 17%, respectively.  相似文献   

16.
Hongtao Fan  Weijia Li  Shuang Jin 《Talanta》2009,79(5):1228-35
An aqueous solution containing sodium polyacrylate (PA, 0.0030 M) was used in diffusive gradients in thin-films technique (DGT) to measure DGT-labile Cu2+ and Cd2+ concentrations. The DGT devices (PA DGT) were validated in four types of solutions, including synthetic river waters containing metal ions with or without complexing EDTA, natural river water (Hun River, Shenyang, China) spiked with Cu2+ and Cd2+, and an industrial wastewater (Shenyang, China). Results showed that only free metal ions were measured by PA DGT, recovery = 98.79% for Cu2+ and recovery = 97.80% for Cd2+ in solutions containing only free metal ions, recovery = 51.02% for Cu2+ and recovery = 51.92% for Cd2+ in solution with metal/EDTA molar ratio of 2:1 and recovery = 0 in solutions with metal/EDTA molar ratio of 1:1 and 1:2. These indicated that the complexes of Cu-EDTA and Cd-EDTA were DGT-inert or not DGT-labile. The DGT performance in spiked river water (recovery = 8.47% for Cu2+ and recovery = 27.48% for Cd2+) and in industrial wastewater (recovery = 14.16% for Cd2+) were also investigated. Conditional stability constants (log K) of PA-Cu and PA-Cd complexes were determined as 6.98 and 5.61, respectively, indicating strong interaction between PA and the metals.  相似文献   

17.
New complexes of Co2+, Ni2+, Cu2+ and Zn2+ with a recently synthesized Schiff base derived from 3,6-bis((aminoethyl)thio)pyridazine were applied for their simultaneous determination with artificial neural networks. The analytical data show the ratio of metal to ligand in all metal complexes is 1:1. The absorption spectra were evaluated with respect to Schiff base concentration, pH and time of the color formation reactions. It was found that at pH 10.0 and 60 min after mixing, the complexation reactions are completed and the colored complexes exhibited absorption bands in the wavelength range 300-500 nm. Spectral data was reduced using principal component analysis and subjected to artificial neural networks. The data obtained from synthetic mixtures of four metal ions were processed by principal component-feed forward neural networks (PCFFNNs) and principal component-radial basis function networks (PCRBFNs). Performances of the proposed methods were tested with regard to root mean square errors of prediction (RMSEP%), using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to simultaneous determination of Co2+, Ni2+, Cu2+ and Zn2+ in different vegetable, foodstuff and pharmaceutical product samples.  相似文献   

18.
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples.  相似文献   

19.
Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = −3.34 cm−1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm−1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = −0.182 (R= 0.92) and −0.684 (R= 0.99) respectively.  相似文献   

20.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号