首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[structure: see text] We report the first determinations of the absolute configurations (ACs) of chiral molecules using discrete frequency, transparent spectral region optical rotations calculated using density functional theory (DFT). The ACs of 2H-naphtho[1,8-bc]thiophene 1-oxide (3), naphtho[1,8-cd]-1,2-dithiole 1-oxide (4), and 9-phenanthryl methyl sulfoxide (5) are determined by comparison of their specific rotations to values calculated via the time-dependent DFT/gauge-invariant atomic orbital (TDDFT/GIAO) methodology using the B3LYP functional and the aug-cc-pVDZ basis set.  相似文献   

2.
Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.  相似文献   

3.
In this work, we present the first calculation of the resonance Raman scattering (RRS) spectrum of rhodamine 6G (R6G) which is a prototype molecule in surface-enhanced Raman scattering (SERS). The calculation is done using a recently developed time-dependent density functional theory (TDDFT) method, which uses a short-time approximation to evaluate the Raman scattering cross section. The normal Raman spectrum calculated with this method is in good agreement with experimental results. The calculated RRS spectrum shows qualitative agreement with SERS results at a wavelength that corresponds to excitation of the S(1) state, but there are significant differences with the measured RRS spectrum at wavelengths that correspond to excitation of the vibronic sideband of S(1). Although the agreement with the experiments is not perfect, the results provide insight into the RRS spectrum of R6G at wavelengths close to the absorption maximum where experiments are hindered due to strong fluorescence. The calculated resonance enhancements are found to be on the order of 10(5). This indicates that a surface enhancement factor of about 10(10) would be required in SERS in order to achieve single-molecule detection of R6G.  相似文献   

4.
We outline an implementation of the origin-independent optical rotation tensor, which includes electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability. The method is based on approximate time-dependent density functional theory. We utilize time-periodic magnetic-field-dependent basis functions as well as a modified velocity-gauge formulation of dynamic polarizability tensors in order to obtain a gauge-origin independence. To ensure gauge-origin independence of the results within a given numerical accuracy, density fit coefficient derivatives are employed. A damping constant has been introduced into the linear response equations to treat both resonance and nonresonance regions of optical activity. We present calculations for trans-2,3-dimethyloxirane and derivatives thereof as well as calculations for androst-4,17-dien-3-one. In the Appendix, we derive the equivalence between the common-gauge origin and gauge-including atomic orbitals formulations for the optical rotation tensor in time-dependent DFT.  相似文献   

5.
We apply the long-range correction (LC) scheme for exchange functionals of density functional theory to time-dependent density functional theory (TDDFT) and examine its efficiency in dealing with the serious problems of TDDFT, i.e., the underestimations of Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies. By calculating vertical excitation energies of typical molecules, it was found that LC-TDDFT gives accurate excitation energies, within an error of 0.5 eV, and reasonable oscillator strengths, while TDDFT employing a pure functional provides 1.5 eV lower excitation energies and two orders of magnitude lower oscillator strengths for the Rydberg excitations. It was also found that LC-TDDFT clearly reproduces the correct asymptotic behavior of the charge-transfer excitation energy of ethylene-tetrafluoroethylene dimer for the long intramolecular distance, unlike a conventional far-nucleus asymptotic correction scheme. It is, therefore, presumed that poor TDDFT results for pure functionals may be due to their lack of a long-range orbital-orbital interaction.  相似文献   

6.
In this paper we present the implementation and benchmarking of a Time Dependent Density Functional Theory approach in conjunction with Double Hybrid (DH) functionals. We focused on the analysis of their performance for through space charge-transfer (CT) excitations which are well known to be very problematic for commonly used functionals, such as global hybrids.Two different families of functionals were compared, each of them containing pure, hybrid and double-hybrid functionals.The results obtained show that, beside the robustness of the implementation, these functionals provide results with an accuracy comparable to that of adjusted range-separated functionals, with the relevant difference that for DHs no parameter is tuned on specific compounds thus making them more appealing for a general use. Furthermore, the algorithm described and implemented is characterized by the same computational cost scaling as that of the ground state algorithm employed for MP2 and double hybrids.  相似文献   

7.
We present an all-electron method for time-dependent density functional theory which employs hierarchical nonuniform finite-element bases and the time-propagation approach. The method is capable of treating linear and nonlinear response of valence and core electrons to an external field. We also introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorbing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly matched layers.  相似文献   

8.
Adiabatic time-dependent density functional theory fails for excitations of a heteroatomic molecule composed of two open-shell fragments at large separation. Strong frequency dependence of the exchange-correlation kernel is necessary for both local and charge-transfer excitations. The root of this is the static correlation created by the step in the exact Kohn-Sham ground-state potential between the two fragments. An approximate nonempirical kernel is derived for excited molecular dissociation curves at large separation. Our result is also relevant when the usual local and semilocal approximations are used for the ground-state potential, as static correlation there arises from the coalescence of the highest occupied and lowest unoccupied orbital energies as the molecule dissociates.  相似文献   

9.
Linear response time-dependent density functional theory is used to study low-lying electronic continuum states of targets that can bind an extra electron. Exact formulas to extract scattering amplitudes from the susceptibility are derived in one dimension. A single-pole approximation for scattering phase shifts in three dimensions is shown to be more accurate than static exchange for singlet electron-He(+) scattering.  相似文献   

10.
A general framework within time-dependent density functional theory is presented for the calculation of excitations to states of arbitrary multiplicity in molecular systems with a non-singlet ground state. The proposed approach combines generalized orbital excitation operators designed to generate excited states which have well-defined multiplicities and the noncollinear formulation of density functional theory and it can be straightforwardly implemented in currently existing density functional programs.  相似文献   

11.
Starting from a formally exact density-functional representation of the frequency-dependent linear density response and exploiting the fact that the latter has poles at the true excitation energies, we develop a density-functional method for the calculation of excitation energies. Simple additive corrections to the Kohn-Sham single-particle transition energies are derived whose actual computation only requires the ordinary static Kohn-Sham orbitals and the corresponding eigenvalues. Numerical results are presented for spin-singlet and triplet energies. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The geometries, UV-vis absorption spectra, and resonance Raman (RR) intensities have been determined for the S1 and S3 excited states of rhodamine 6G (R6G) in vacuum and ethanol by means of DFT/TDDFT methodologies with the aim of better understanding the structures and properties of the excited states. The RR spectra have been simulated from the vibronic theory of RR scattering as well as within the short-time approximation, while the solvent effects have been modeled using the polarizable continuum model. The S1 and S3 states of R6G present UV-vis absorption bands with similar vibronic structure, i.e., a shoulder at smaller wavelengths, although this shoulder is relatively more intense and more sensitive to the solvent in the case of S3. These differences are corroborated by the larger geometry relaxations upon excitation for S3 and the fact that the charge transfer of S3 is reduced in ethanol. Moreover, the differences between S1 and S3 are magnified when considering the RR spectra. On one hand, the RR spectrum of R6G in resonance with the S0 --> S1 transition presents many transitions of which the relative intensities strongly vary when the excitation wavelength gets closer to the maximum of absorption. The RR spectrum of R6G in resonance with S1 is however little influenced by the solvent. On the other hand, the RR spectrum of R6G in resonance with the S0 --> S3 transition displays only a few bands, strongly depends on the solvent, and is little affected when changing the excitation wavelength within the limits of the absorption band. As a consequence, the short-time approximation is suitable to reproduce the RR spectrum of R6G in resonance with S3 for a broad range of excitation wavelengths, whereas the vibronic theory approach is needed for describing the RR spectrum of R6G in resonance with S1 close to resonance.  相似文献   

13.
《Chemical physics letters》2003,367(5-6):778-784
Non-expanded dispersion energies are calculated from time-dependent coupled-perturbed density functional theory (DFT) employing various non-hybrid and hybrid exchange-correlation potentials and suitable adiabatic local density approximations for the exchange-correlation kernel. Considering the dimer systems He2, Ne2, Ar2, NeAr, NeHF, ArHF, (H2)2, (HF)2, and (H2O)2 it is shown that the effects of intramonomer electron correlation on the dispersion energy are accurately reproduced with the PBE0AC exchange-correlation potential. In contrast, the uncoupled sum-over-states approximation yields inacceptable errors. These are mainly due to neglect of the Coulomb and exchange-correlation kernels and therefore, not substantially improved through an asymptotic correction of the exchange-correlation potential.  相似文献   

14.
We present density-functional theory for time-dependent response functions up to and including cubic response. The working expressions are derived from an explicit exponential parametrization of the density operator and the Ehrenfest principle, alternatively, the quasienergy ansatz. While the theory retains the adiabatic approximation, implying that the time-dependency of the functional is obtained only implicitly-through the time dependence of the density itself rather than through the form of the exchange-correlation functionals-it generalizes previous time-dependent implementations in that arbitrary functionals can be chosen for the perturbed densities (energy derivatives or response functions). In particular, general density functionals beyond the local density approximation can be applied, such as hybrid functionals with exchange correlation at the generalized-gradient approximation level and fractional exact Hartree-Fock exchange. With our implementation the response of the density can always be obtained using the stated density functional, or optionally different functionals can be applied for the unperturbed and perturbed densities, even different functionals for different response order. As illustration we explore the use of various combinations of functionals for applications of nonlinear optical hyperpolarizabilities of a few centrosymmetric systems; molecular nitrogen, benzene, and the C(60) fullerene. Considering that vibrational, solvent, and local field factors effects are left out, we find in general that very good experimental agreement can be obtained for the second dynamic hyperpolarizability of these systems. It is shown that a treatment of the response of the density beyond the local density approximation gives a significant effect. The use of different functional combinations are motivated and discussed, and it is concluded that the choice of higher order kernels can be of similar importance as the choice of the potential which governs the Kohn-Sham orbitals.  相似文献   

15.
Excited state properties of one-dimensional molecular materials are dominated by many-body interactions resulting in strongly bound confined excitons. These effects cannot be neglected or treated as a small perturbation and should be appropriately accounted for by electronic structure methodologies. We use adiabatic time-dependent density functional theory to investigate the electronic structure of one-dimensional organic semiconductors, conjugated polymers. Various commonly used functionals are applied to calculate the lowest singlet and triplet state energies and oscillator strengths of the poly(phenylenevinylene) and ladder-type (poly)(para-phenylene) oligomers. Local density approximations and gradient-corrected functionals cannot describe bound excitonic states due to lack of an effective attractive Coulomb interaction between photoexcited electrons and holes. In contrast, hybrid density functionals, which include long-range nonlocal and nonadiabatic corrections in a form of a fraction of Hartree-Fock exchange, are able to reproduce the excitonic effects. The resulting finite exciton sizes are strongly dependent on the amount of the orbital exchange included in the functional.  相似文献   

16.
By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states--such as the Sternheimer method--as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.  相似文献   

17.
A formulation of time-dependent density functional theory (TDDFT) in the presence of a static imaginary perturbation is derived. A perturbational approach is applied leading to corrections to various orders in the quantities of interest, namely, the excitation energies and transition densities. The perturbed TDDFT equations are relatively straightforward to derive but the resulting expressions are rather cumbersome. Simplifications of these equations are suggested. Both the simplified and full expressions are used to obtain equations for first- and second-order corrections to the excitation energy, the first-order correction to the transition density, and the corrections for both quantities to first-order in two different perturbations. This formulation, called magnetically perturbed TDDFT, details how conventional TDDFT calculations can be corrected to allow for the inclusion of a static magnetic field and/or spin-orbit coupling.  相似文献   

18.
19.
The polarizable continuum model (PCM) for describing the solvent effect was combined with the fragment molecular orbital-based time-dependent density functional theory (TDDFT). Several levels of the many-body expansion were implemented, and the importance of the many-body contributions to the singlet-excited states was discussed. To calibrate the accuracy, we performed a number of the model calculations using our method and the regular TDDFT in solution, applying them to phenol and polypeptides at the long-range corrected BLYP/6-31G* level. It was found that for systems up to 192 atoms the largest error in the excitation energy was 0.006 eV (vs. the regular TDDFT/PCM of the full system). The solvent shifts and the conformer effects were discussed, and the scaling was found to be nearly linear. Finally, we applied our method to the lowest singlet excitation of the photoactive yellow protein (PYP) in aqueous solution and determined the excitation energy to be in reasonable agreement with experiment. The excitation energy analysis provided the contributions of individual residues, and the main factors as well as their solvent shifts were determined.  相似文献   

20.
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号