首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological regulation that is achieved by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combined with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented.  相似文献   

2.
In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon–metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.  相似文献   

3.
Recognition of carbohydrates by proteins and nucleic acids is highly specific, but the dissociation constants are relatively high (generally in the mM to high μM range) because of the lack of hydrophobic groups in the carbohydrates. The high specificity of this weak binding often comes from many hydrogen bonds and the coordination of metal ions as bridge between sugars and receptors. Though weak hydrophobic interactions between sugars and proteins have also been identified, the unique shape of a complex carbohydrate under the influence of anomeric and exo anomeric effects (the glycosidic torsion angles are therefore often not flexible but are typically somewhat restricted) and the topographic orientation of the hydroxyl and charged groups contribute most significantly to the recognition process. Studies on the structure–function relationship of a complex carbohydrate therefore require deliberate manipulation of its shape and functional groups, and synthesis of oligosaccharide analogs from modified monosaccharides is often useful to address the problem. The availability of various monosaccharides and their analogs for the synthesis of complex carbohydrates together with the information resulting from structural studies (such a NMR or X-ray studies on sugar–protein complexes) will certainly provide a basic understanding of complex carbohydrate recognition. An ultimate goal is to develop simple and easy-to-make non-carbohydrate molecules that resemble the active structure involved in carbohydrate–receptor interaction or the transition-state of an enzyme-catalyzed transformation (for example, glycosidase or glycosyltransferase reactions) and have the approprite bioavailability to be used to control the carbohydrate function in a specific manner. In part one of this review we described various enzymatic approaches to the synthesis of monosaccharides, analogs, and related structures. We describe in this part enzymatic and chemoenzymatic approaches to the synthesis of oligosaccarides and analogs, including those involved in E-selectin recognition, and strategies to inhibit glycosidases and glycosyltransferases.  相似文献   

4.
Covering: up to April 2012Sucrose is a widespread carbohydrate in nature and is involved in many biological processes. Its natural abundance makes it a very appealing renewable raw material for the synthetic production of high-valued molecules. To further diversify the structure and the inherent properties of these molecules, the access to sucrose analogs is of utmost interest and has historically been widely explored through chemical means. Nature also offers a large panel of sucrose-scaffold derivatives, including phosphorylated or highly substituted phenylpropanoid esters amenable to transformation. Additionally, the use of microorganisms or enzymes could provide an alternative ecologically-compatible manner to diversify sucrose-scaffold derivatives to enable the synthesis of oligo- or polysaccharides, glycoconjugates or polymers that could exhibit original properties for biotechnological applications. This review covers the main biological routes to sucrose derivatives or analogs that are prevalent in nature, that can be obtained via enzymatic processes and the potential applications of such sucrose derivatives in sugar bioconversion, in particular through the engineering of substrates, enzymes or microorganisms.  相似文献   

5.
核苷二磷酸糖在结构上是由1分子的糖或糖的衍生物和1分子的核苷二磷酸所组成,它是糖基转移酶的供体底物之一。糖基转移酶正被越来越多的应用于制备寡糖、糖缀合物和含糖基天然产物,因此研究核苷二磷酸糖的有效合成方法是很有必要的。本文总结了合成核苷二磷酸糖的各种化学法和酶法。  相似文献   

6.
A stereodivergent synthesis of differently configured C2‐branched 4‐amino sugar derivatives was accomplished. The Lewis acid mediated rearrangement of phenylthio‐substituted 1,2‐oxazines delivered glycosyl donor equivalents that can directly be employed in glycosidation reactions. Treatment with methanol provided internally protected amino sugar equivalents that have been transformed into the stereoisomeric methyl glycosides 28 , ent‐ 28 , 29 , ent‐ 29 and 34 in two simple reductive steps. Reaction with natural carbohydrates or bicyclic amino sugar precursors allowed the synthesis of homo‐oligomeric di‐ and trisaccharides 44 , 46 and 47 or a hybrid trisaccharide 51 with natural carbohydrates. Access to a bivalent amino sugar derivative 54 was accomplished by reaction of rearrangement product 10 with 1,5‐pentanediol. Alternatively, when a protected L ‐serine derivative was employed as glycosyl acceptor, the glycosylated amino acid 60 was efficiently prepared in few steps. In this report we describe the synthesis of unusual amino sugar building blocks from enantiopure 1,2‐oxazines that can be attached to natural carbohydrates or natural product aglycons to produce new natural product analogues with potential applications in medicinal chemistry.  相似文献   

7.
Carbohydrates on cell surfaces are information molecules. Although only seven or eight monosaccharides are commonly used as building blocks in mammalian systems, the multifunctionality of these monomers can lead to the assembly of an immense variety of complex structures. Millions of different tetrasaccharide structures, for example, can be constructed from this small number of building blocks, if branching, the stereochemistry of glycosidic linkages, and the modification of hydroxyl and amino groups are taken into consideration. Oligosaccharides therefore represent an effective class of biomolecules that code for a vast amount of information required in various biological recognition processes, such as intercellular communication, signal transduction, cell adhesion, infection, cell differentiation, development and metastasis. The pace of development of pharmaceuticals based on carbohydrates has, however, been slower than that based on other classes of biomolecules. Part of the reason is the lack of technologies for the study of complex carbohydrates. There is no method to amplify oligosaccharides for sequence analysis. There is no machine available for automated synthesis of oligosaccharides. In addition, the possibly poor bioavailability and difficulties in the large-scale synthesis of carbohydrates have undoubtedly contributed to this slow pace. The enzymatic and chemoenzymatic methods, especially those based on aldolases and glycosyltransferases, described here appear to be useful for the synthesis of mono- and oligosaccaharides and related molecules. Further advances in glycobiology will probably lead to the development of new technologies for the study of carbohydrate recognition and for the synthesis of bioactive carbohydrates and mimetics to control the recognition processes.  相似文献   

8.
BACKGROUND: Oligosaccharide synthesis is becoming increasingly important to industry as diverse therapeutic roles for these molecules are discovered. The chemical synthesis of oligosaccharides on an industrial scale is often prohibitively complex and costly. An alternative, that of enzymatic synthesis, is limited by the difficulty of obtaining an appropriate enzyme. A general screen for enzymes that catalyze the synthesis of the glycosidic bond would enable the identification and engineering of new or improved enzymes. RESULTS: Glycosynthases are nucleophile mutants of retaining glycosidases that efficiently catalyze the synthesis of the glycosidic linkage by condensing an activated glycosyl fluoride donor with a suitable acceptor sugar. A novel agar plate-based coupled-enzyme screen was developed (using a two-plasmid system) and used to select an improved glycosynthase from a library of mutants. CONCLUSIONS: Plate-based coupled-enzyme screens of this type are extremely valuable for identification of functional synthetic enzymes and can be applied to the evolution of a range of glycosyl transferases.  相似文献   

9.
Conjugation of different molecular species using copper(I)‐catalyzed click reaction between azides and terminal alkynes is among the best available methods to prepare multifunctional compounds. The effectiveness of this method has provided wider acceptance to the concept of click chemistry, which is now widely employed to synthesize densely functionalized organic molecules. This article summarizes the contributions from our group in the development of new methods for the synthesis of functional molecules using copper(I)‐catalyzed click reactions. We have developed very efficient methods for the synthesis of peptides and amino acids conjugated with carbohydrates, thymidine and ferrocene. We have also developed an efficient strategy to synthesize triazole‐fused heterocycles from primary amines, amino alochols and diols. Finally, an interesting method for the synthesis of pseudodisaccharides linked through triazoles, starting from carbohydrate‐derived donor‐acceptor cyclopropanes is discussed.  相似文献   

10.
Carbohydrates, either bound to proteins or in lipids, play essential roles as communication molecules in many intercellular and intracellular processes. In particular, carbohydrates are important mediators of cell-cell recognition events and have been implicated in related processes such as cell signaling regulation, cellular differentiation and immune response. This diverse utility has long suggested the power of carbohydrates in therapeutic approaches. This Concepts article highlights the recent potential uses of glycoconjugates as therapeutics, with particular reference to glycopeptides, glycoproteins, glycodendrimers, and glycoarrays.  相似文献   

11.
It is well-known that metal ion complexes are essential in various biological systems, including those with adenosine nucleotides which are substrates for a large number of enzymatic processes. The interactions of various metal ions with adenosine nucleotides have been intensively studied by multinuclear NMR spectroscopy. Nucleotides are polydentate ligands with various potential binding sites, including nitrogen atoms on the purine base, hydroxyl groups on the ribose sugar, and negatively charged oxygen atoms in the phosphate group. Depending on the experimental conditions (e.g. pH, concentration range, etc.) and on the size and nature of the metal ions, monodentate, or multidentate coordination to these donor atoms are possible. The review focuses on the applications of different NMR techniques in identifying the stoichiometry and the mode of metal binding in complexes formed with the most important adenosine nucleotides, like adenosine-5′-mono-, di- and triphosphates (AMP, ADP and ATP). Ligand exchange dynamics for some metal ion complexes are also presented.  相似文献   

12.
Abstract

In synthetic pathways to complex carbohydrates such as oligosaccharides or nucleotide sugars the activated sugar 1-phosphates serve as important starting molecules. In this study the enzymatic synthesis of α-glucose-1-phosphate (Glc-1-P) has been investigated using a new bacterial α-glucan phosphorylase from Corynebacterium callunae. The major factors governing the rate of reaction and the attainable degree of substrate conversion have been identified and, accordingly, for optimizing the yield and limiting reaction time for the enzymatic process several points must be considered: (i) the pH-dependent equilibrium of reaction, (ii) product inhibition of the phosphorylase and (iii) enzymatic cleavage of α-1,6 glycosidic linkages present in α-1,4-glucans such as starch or maltodextrins by pullulanases to improve their phosphorolytic conversion. Results obtained in continuous experiments with the phosphorylase retained in an ultrafiltration membrane reactor confirmed the complete operational stability of the enzyme for several days at 30 °C. Since no more than approximately 18 % of the inorganic phosphate can be converted into Glc-1-P an efficient procedure for phosphate and product recovery will be particularly important.  相似文献   

13.
Su DM  Eguchi H  Yi W  Li L  Wang PG  Xia C 《Organic letters》2008,10(5):1009-1012
We report the enzymatic synthesis of an important tumor-associated carbohydrate antigen, Globo-H hexasaccharide. Starting with Lac-OBn as the initial acceptor, this approach employs three glycosyltransferases: LgtC, an alpha1,4-galactosyltransferase; LgtD, a bifunctional beta1,3-galactosyl/beta1,3-N-acetylgalactosaminyltransferase; and WbsJ, an alpha1,2-fucosyltransferase. In addition, two epimerases, GalE and WbgU, were also employed for the generation of more expensive sugar nucleotides, UDP-Gal and UDP-GalNAc, from their corresponding inexpensive C4 epimers. This study represents a facile enzymatic synthesis of the Globo-H antigen.  相似文献   

14.
A generally applicable method for HPLC analysis of sugar nucleotides was established. Separation was achieved using ion-pair chromatography on a reversed-phase column. Ion-pair reagents were selected and various parameters optimized with respect to separation of 11 of the most important sugar nucleotides and compatibility with on-line detection by electrospray ionization MS and NMR. The method was applied to the on-line analysis of the GDP-D-mannose-4,6-dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose reductase (Rmd) catalyzed conversion of GDP-D-mannose to GDP-D-rhamnose. By LC-NMR, the intermediate product of the reaction was shown to be a mixture of GDP-4-keto-6-deoxy-D-mannose and GDP-3-keto-6-deoxy-D-mannose. Nucleotide co-factors of enzymatic reactions such as ATP and NADH did not interfere with the analysis of nucleotide-activated sugars.  相似文献   

15.
The oligosaccharide residue in glycoconjugates located in cell membranes is responsible for intercellular recognition and interaction: it acts as a receptor for proteins, hormones, and microorganisms and governs immune reactions. These significant activities have stimulated great interest in the field of oligosaccharides and glycoconjugates. Although many advances have been made in the synthesis of oligosaccharides, more convenient and efficient methods are still needed. This review describes one of these new methods-the one-pot sequential glycosylation approach as a potent tool for oligosaccharide assembly. The oligosaccharide library construction in a one-pot fashion is also summarized.  相似文献   

16.
Synthetic glycoclusters have gained substantial attention as mimetics of multivalent glycoconjugates. For their proposed glycobiological applications, it is advantageous to incorporate a functionalized tether into the clusters, which allows coupling to solid supports and other molecules such as reporter groups or even bioactive molecules. We herein report the use of carbohydrates as oligofunctional scaffolds for the synthesis of tethered cluster mannosides. Glycocluster 11 was prepared following two different pathways, starting either from glucose or the nonreducing disaccharide trehalose. The oligo alcohols 5 and 14 served as acceptors in the subsequent oligo-mannosylation reaction, in which three main problems were overcome: (i) incomplete glycosylation, (ii) cleavage of the core-glycoside, and (iii) ortho ester formation. Optimum conditions for the glycosylation were identified utilizing an advanced MALDI-TOF protocol.  相似文献   

17.
[Image: see text] Oligosaccharides at cell surfaces are known to play a critical role in many biological processes such as biorecognition, interactions between cells and with artificial surfaces, immune response, infection and inflammation. In order to facilitate studies of the role of sugars, an increasing number of novel tools are becoming available. New synthetic strategies now provide much more efficient access to complex carbohydrates or glycoconjugates. Branched carbohydrates and hybrids of carbohydrates conjugated to polymers have been prepared using solution and/or solid-phase synthesis and advanced methods of polymerization. These materials are essential for the development of methodologies to study and map the molecular structure-function relationship at interfaces. This article highlights recent advances in the synthesis of carbohydrates and polymer hybrids mimicking the properties and functionalities of the natural oligosaccharides, as well as selected applications in biology, biotechnology and diagnostics.  相似文献   

18.
Glycosylation of bioactive molecules has been found to improve the pharmacokinetic properties of the parent molecule. However, their syntheses often require tedious protecting group manipulations. The development of methodologies which allow direct aqueous conversion of unprotected sugars into glycosides is therefore an ambitious goal. Herein, we present a broadly applicable method for the synthesis of selenoglycosides in water. We show the ease of direct conjugation of unprotected glycosyl diselenides with various biomolecules, including resorcinol, resveratrol, and the antitumor agent, gimeracil, furnishing the corresponding selenoglycoconjugates in up to 96 % yield. We also demonstrate the oxidatively-triggered release of the bioactive drug from the sugar, priming these molecules for medicinal applications. The generality and broad substrate scope of this novel transformation will provide access to various selenium-containing glycomimetics and glycoconjugates.  相似文献   

19.
Carbohydrates as the next frontier in pharmaceutical research   总被引:6,自引:0,他引:6  
Synthetic carbohydrates and glycoconjugates are used to study their roles in biological important processes such as inflammation, cell-cell recognition, immunological response, metastasis, and fertilization. The development of an automated oligosaccharide synthesizer greatly accelerates the assembly of complex, naturally occurring carbohydrates as well as chemically modified oligosaccharide structures and promises to have major impact on the field of glycobiology. Tools such as microarrays, surface plasmon resonance spectroscopy, and fluorescent carbohydrate conjugates to map interactions of carbohydrates in biological systems are presented. Case studies of the successful application of carbohydrates as active agents are discussed, for example, fully synthetic oligosaccharide vaccines to combat tropical diseases (e.g., malaria), bacterial infections (e.g., tuberculosis), viral infections such as HIV, and cancer. Aminoglycosides serve as examples of drugs acting through carbohydrate-nucleic-acid interactions, while heparin works by carbohydrate-protein interactions. A general, modular strategy for the complete stereoselective synthesis of defined heparin oligosaccharides is presented. A carbohydrate-functionalized fluorescent polymer has been shown to detect miniscule amounts of bacteria faster than commonly used methods.  相似文献   

20.
A family of seven topologically isomeric calix[4]arene glycoconjugates was prepared through the synthesis of a series of alkyne‐derivatised calix[4]arene precursors that are suitable for the attachment of sugar moieties by microwave‐assisted copper(I)‐catalysed azide–alkyne cycloaddition (CuAAC). The glycoconjugates thus synthesised comprised one mono‐functionalised derivative, two 1,2‐ or 1,3‐divalent regioisomers, one trivalent and three tetravalent topoisomers in the cone, partial cone or 1,3‐alternate conformations. The designed glycoconjugates were evaluated as ligands for the galactose‐binding lectin PA‐IL from the opportunistic bacterium Pseudomonas aeruginosa, a major causative agent of lung infections in cystic fibrosis patients. Binding affinities were determined by isothermal titration calorimetry (ITC), and the interaction with the lectin was shown to be strongly dependant on both the valence and the topology. Whereas the trivalent conjugate displayed enhanced affinity when compared to a monosaccharide model, the tetravalent conjugates are to‐date the highest‐affinity ligands measured by ITC. The topologies presenting carbohydrates on both faces of calixarene are the most potent ones with dissociation constants of approximately 200 nM . Molecular modelling suggests that such a multivalent molecule can efficiently chelate two of the binding sites of the tetrameric lectin; this explains the 800‐fold increase of affinity achieved by the tetravalent molecule. Surface plasmon resonance (SPR) experiments confirmed that this glycoconjugate is the strongest inhibitor for binding of PA‐IL to galactosylated surfaces for potential applications as an anti‐adhesive agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号