首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Various types of the O-protected derivatives and the 9-bromo analogs of methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate were synthesized from methyl [2-(trimethyl-silyl)ethyl 5-acetamido-4,7-di-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate (1) or methyl [2-(trimethylsilyl)ethyl 5-acetamido-8,9-di-O-isopropylidene-D-glycero-α-D-galacto-2-nonulopyranosid]onate (3).  相似文献   

2.
Abstract

5-Acetamido-3.5-dideoxy-D-galacto-2-octulosonic acid derivatives and the α-2-thioanalog (14) were synthesized. Methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-α-D-galacto-2-octulopyranosid]onate (8), prepared from methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate (1) via 8,9-O-isopropylidenation, O-acetylation, O-deisopropylidenation, metaperiodate oxidation, and sodium borohydride reduction, was converted, by selective bromination, into the 8-bromo derivatives (9). Compound 12, derived from 8 via O-acetylation and boron trifluoride etherate treatment, was converted to the 2-chloro derivative (13), which underwent displacement with potassium thioacetate, to yield methyl 5-acetamido-4,7,8-tri-O-acetyl-2-S-acetyl-2-thio-α-D-galacto-2-octulopyranosonate (14).  相似文献   

3.
Abstract

The readily available methyl (methyl 3-deoxy-5,8:7,9-di-O-isopropylidene-β-D-glycero-D-galacto-2-nonulopyranosid)onate (7) was converted in five synthetic steps into methyl (methyl 4-acetamido-3,4-dideoxy-β-D-glycero-D-talo-2-nonulopyranosid)onate (11). Selective protection of the C-4, C-7, C-8 and C-9 hydroxy groups of methyl (methyl 3-deoxy-8,9-O-isopropylidene-β-D-glycero-D-galacto-2-nonulpyranosid)onate (2) followed by oxidation of the C-5 hydroxy group and then its oximination gave 5-hydroxyimino derivatives (15 and 16).

  相似文献   

4.
ABSTRACT

Selective protection for the individual hydroxyl groups of methyl (phenyl 3-deoxy-2-thio-β-D-glycero-D-galacto-2-nonulopyranosid)onate (2) was examined. The 4-, 5-, and 7-hydroxyl groups of methyl (phenyl 3-deoxy-8,9-O-isopropylidene-2-thio-β-D-glycero-D-galacto-2-nonulopyranosid)onate (3) were found selectively to be protected by t-butyldimethylsilyl, methoxymethyl, and benzoyl groups, respectively. In order to obtain the 8- and 9-hydroxyl derivatives selectively, methyl (phenyl 4,5,7-tri-O-acetyl-9-O-t-butyldimethylsilyl-3-deoxy-2-thio-β-D-glycero-D-galacto-2-nonulopyranosid)onate (12) and methyl (phenyl 4,5,7,8-tetra-O-benzyl-9-O-triphenylmethyl-3-deoxy-2-thio-β-D-glycero-D-galacto-2-nonulopyranosid)onate (19) were prepared in moderate yields.  相似文献   

5.
ABSTRACT

Various types of the O-protected derivatives and the 9-bromo analogs of methyl [2-(trimethylsilyl)ethyl 5-acetamido-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate were synthesized from methyl [2-(trimetnyl-silyl)ethyl 5-acetamido-4, 7-di-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate (1) or methyl [2-(trimethylsilyl)ethyl 5-acetamido-8, 9-di-O-isopropylidene-D-glycero-α-D-galacto-2-nonulopyranosidlonate (3).  相似文献   

6.
Abstract

α-Stereocontrolled, glycoside synthesis of trimeric sialic acid is described toward a systematic approach to the synthesis of sialoglycoconjugates containing an α-sialyl-(2→8)-α-sialyl-(2→8)-sialic acid unit α-glycosidically linked to O-3 of a galactose residue in their oligosaccharide chains. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-d-galactopyranoside (4) or 2-(trimethylsilyl)ethyl 2,3,6,2′,6′-penta-O-benzyl-β-lactoside (5), with methyl [phenyl 5-acetamido-8-O-[5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1”, 9′-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′, 9-lactone]-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (3), using N-iodosuccinimide-trifluoromethanesulfonic acid as a promoter, gave the corresponding α-glycosides 6 and 8, respectively. The glycosyl donor 3 was prepared from trimeric sialic acid by treatment with Amberlite IR-120 (H+) resin in methanol, O-acetylation, and subsequent replacement of the anomeric acetoxy group with phenylthio. Compounds 6 and 8 were converted into the per-O-acyl derivatives 7 and 9, respectively.  相似文献   

7.
ABSTRACT

An efficient, chemoenzymatic synthesis of ganglioside GM4 analogs having a potent immunosuppressive activity is described. One-step and highly regìoselective 6-O-acetylation of long-chain alkyl, 2-(trimethysilyl)ethyl and phenyl 1-thio β-D-galactopyranosides was performed by using vinyl acetate and lipase PS. The resulting 6-O-acetates (70-93%) were sialylated with methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-2-nonulopyranosid)onate promoted by N-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH). The 2-(trimethylsilyl)ethyl glycoside derivative was converted to the imidate which was then coupled with dodecan-1-ol, hexadecan-1-ol, and 2-(tetradecyl)hexadecan-1-ol, respectively, to give the protected GM4 derivatives (90-96%). O-Deacylation and saponification of the methyl ester gave the target ganglioside GM4 analogs in high yields.  相似文献   

8.
Abstract

A first total synthesis of gangliosides GD1c and GT1a containing Neu5Acα(2→8) Neu5Acα(2→3)Gal residue in their non-reducing terminal is described. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylono-11,9-lactone) -4,7- di-O-acetyl-3,5-dideoxy-D-glycero-α-D-galcto-2-nonulopyranosyranosylanate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-gala-ctopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyranosyl)- (1→4) -O -(2,3,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2) or 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-D-galactopyranosyl)-(1→4)-(9-[methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)]-O-(2,6-di-O-benzyl-β-D-galactopyranosyl) - (1→4) - 2,3,6-tri-O-benzyl-β-D-glucopyranoside (3) in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) gave the corresponding hexa-and heptasaccharide derivatives 4 and 5, respectively. These oligosaccharides were converted into the α-trichloroacetimidates 10 and 11 via reductive removal of the benzyl groups and/or benzylidene group, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and treatment with trichloroacetonitrile, which, on coupling with 2-azidosphingosine derivatives 12 or 13, gave the β-glycosides 14 and 15, respectively. Finally, 14 and 15 were transformed, via selective reduction of the azido group, coupling with octadecanoic acid and removal of all protecting groups, into the title gangliosides GD1c 18 and GT1a 19.  相似文献   

9.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

10.
Abstract

A first total synthesis of a cholinergic neuron-specific ganglioside, GQ1bα (IV3Neu5Acα, III6Neu5Acα, II3Neu5Acα2-Gg4Cer) is described. Regio- and stereo-selective monosialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3,4-O-isopropylidene-β-d-galactopyranosyl)-(1→4)-O-(2,6-di-O-benzyl-β-dgalactopyranosyl)-(1→4)- O-2,3,6-tri-O-benzyl-β-dglucopyranoside (4) with methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d glycero-d galacto-2-nonulopyranosid) onate (5), and subsequent dimericsialylation of the hydroxyl group at C-3 of the Gal residue with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d glycero-α-d galacto-2-nonulopyranosylono-1′,9-lactone)-4, 7-di-O-acetyl-3,5-dideoxy-2-thio-d glycero-d galacto-2-nonulopyranosid]onate (7), using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 8 containing α-glycosidically-linked mono- and dimeric sialic acids. This was transformed into the acceptor 9 by removal of the isopropylidene group. Condensation of methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d glycero-α-d galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-dgalactopyranoside (10) with 9, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 11 in high yield. Compound 11 was converted into α-trichloroacetimidate 14, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15), gave the β-glycoside 16. Finally, 16 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 18 in good yield.  相似文献   

11.
Abstract

Ganglioside GM4 and GM3 analogs, containing 3-deoxy-D-glycero-D-galacto-2-nonulopyranosonic acid (KDN) in place of N-acetylneuraminic acid, have been synthesized. KDN, prepared by the condensation of oxalacetic acid with D-mannose, was converted into methyl (phenyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-2-thio-D-glycero-D-galacto-2-nonulopyranosid)onate (2) via methyl esterification, O-acetylation and replacement of the anomeric acetoxy group with phenyl thio. Glycosylation of 2 with 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-D-galactopyranoside (3) or 2-(trimethylsilyl)ethyl O-(6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,6-di-O-benzoyl-β-D-glucopyranoside (4) was performed, using N-iodosuccinimide-trimethylsilyl trifluoromethanesulfonate as the glycosyl promoter, to give 2-(trimethylsilyl)ethyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-6-O-benzoyl-β-D-galacto-pyranoside (5) and 2-(trimethylsilyl)ethyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-(6-O-benzoyl-β-D-galactopyrano-syl)-(l→4)-(2,6-di-O-benzoyl-β-D-glucopyranoside (9), respectively. Compounds 5 and 9 were converted via O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the corresponding trichloroacetimidates 8 and 12, respectively. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (13) with 8 and 12 in the presence of boron trifluoride etherate afforded the expected β-glycosides 14 and 17, which were transformed via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation and de-esterification, into the target gangliosides 16 and 19 in high yields.  相似文献   

12.
ABSTRACT

7-O-, 7,9-Di-O-, and 7,8,9-tri-O-acetyl derivatives of N-acetyl-neuraminic acid were synthesized starting from benzyl [2-(trimethylsilyl)-ethyl 5-acetamido-3,5-dideoxy-8,9-O-isopropylidene-D-glycero-α-D-galacto-2-nonulopyranosid]onate (1).  相似文献   

13.
Abstract

The hematoside analog 1 [NeuGcα(2→3)Galβ(1→4)Glcβ(1→1)Cer], which contains a phytosphingosine as a sphingoid base and an α-hydroxyfatty acid, has been synthesized. Coupling of the methyl (methyl 5-benzyloxyacetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-α- and -β-D-galacto-2-nonulopyranosid)onate 5, prepared from the corresponding 5-acetamido derivative 2, with a lactose derivative 6 afforded sialolactoside 7, which was converted to the corresponding trichloroacetimidate 10. Glycosylation of 10 with the ceramide tribenzoate 12 gave the protected hematoside analog 13, which was deprotected to the hematoside analog 1.  相似文献   

14.
ABSTRACT

Each of four ganglioside GM4 and GM3 analogues containing 2- or 3-branched fatty alkyl residues in place of ceramide have been synthesized. Coupling of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (13) or O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-glacto-2-nonulopyranosylonate)-(2→3)-O-(2,4-di-O-acetyl-6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-3-O-acetyl-2,4-di-O-benzoyl-α-D-glucopyranosyl trichloroacetimidate (14) with 2- or 3-branched fatty-alkyl-1-ols (9-12), prepared from the corresponding branched fatty acids by methyl esterification and reduction, using BF3Ot2 gave the corresponding ganglioside analogues (15, 17, 19, 21, 23, 25, 27, 29) in good yields, which were coverted, via O-deacylation and de-esterification, into the title compounds.  相似文献   

15.
Abstract

A stereocontrolled, facile total synthesis of ganglioside GM2 is described. Coupling of 2- (trimethylsilyl)ethyl O-(2,6-di-O-benzyl-(β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2), prepared from 2-(trimethylsilyl)ethyl β-lactoside (1) by selective 3′,4′-O-isopropylidenation, O-benzylation, and subsequent removal of the isopropylidene group, with methyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy -2-thio-D-glycero-D-galacto -2-nonulopyranosid)onate (4) using N-iodosuccini-midc (NIS), gave the trisaccharide (5), which on condensation with methyl 6-O-benzoyl -2-dcoxy-3,4-O-isopropylidene-2-phthalimido-l-thio-β-D-galactopyranoside (11), gave the protected ganglioside GM2 oligosaccharide 12. Compound 12 was transformed, via O-deisopropylidenation, O-acetylation, removal of the phthaloyl group, N-acetylation, removal of the benzyl groups followed by (O-acetylation, selective removal of the 2-(rximethylsilyl)ethyl group, and subsequent imidate formation, into the final glycosyl donor 19. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (20) with the α-trichloroacetimidate 19 gave the β-glycoside 21, which on channeling through selective reduction of the azide group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title ganglioside.  相似文献   

16.
A series of unique nonreducing disaccharides, galactopyranosyl-(1→2)-N-acetylneuraminic acids and glucopyranosyl-(1→2)-N-acetylneuraminic acids, which had N-acetylneuraminic acid linked to the anomeric position of another sugar, were synthesized. In these syntheses, the anomeric thiophenyl group of phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-galactopyranoside and phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside was deprotected selectively to afford the corresponding hemiacetals that were used as glycosyl acceptors. These glycosyl acceptors were then coupled with phenyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-2-nonulopyranosid)onate using N-iodosuccinimide and trifluoromethanesulfonic acid as promoters in acetonitrile at ?30°C, followed by sequential deprotection of the acetyl, methyl ester, and benzyl groups, to afford the title compounds. The ability of neuraminidase to hydrolyze these compounds was evaluated, and a correlation between the hydrolysis rates and structures was observed.  相似文献   

17.
ABSTRACT

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lewis X is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (1) with methyl 2,3,4-tri-O-benzyl-1-thio-β-L-fuco-pyranoside (4) gave the α-glycoside (5), which was converted by reductive ring-opening of the benzylidene acetal into the glycosyl acceptor (6). Dimethyl(methylthio)sulfonium triflate-promoted coupling of 6 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside (7) afforded the desired hexasaccharide 8 in good yield. Compound 8 was converted into the α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octa-decene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azide group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 16.  相似文献   

18.
ABSTRACT

Coupling of the sodium salt of S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-galacto-2-nonulopyranosylonate)-(2→'6)-2,3,4-tri-O-acetyl-1,6-dithio-β-D-glucopyranose (5), -β-D-galactopyranose (8), or S-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→'6)-O-(2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranosyl)-(1→'4)-2,3,6-tri-O-acetyl-1-thio-β-D-glucopyranose (12), which were prepared from the corresponding 1-hydroxy compounds, 1, 2, and 9, via 1-chlorination, displacement with thioacetyl group, and S-deacetylation, with (2S,3R,4E)-2-azido-3-O-benzoyl-1-O-(p-toluenesulfonyl)-4-octadecene-1,3-diol (13), gave the corresponding β-thioglycosides 14, 18 and 22, respectively in good yields. The β-thioglycosides obtained were converted, via selective reduction of the azide group, condensation with octadecanoic acid, and removal of the protecting groups, into the title compounds.  相似文献   

19.
Abstract

A stereo controlled, facile total synthesis of gangliosides GM1 and GD1a, in connection with systematic synthesis of ganglio-series of ganglioside, is described. Glycosylation of 2-(trimethylsilyl) ethyl O-(2-acetamido-6-O-benzoyl-2-deoxy-(β-D-galactopyranosyl)-(l→4)-O-[(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2–nonulopyranosylonate)-(2→3)]-O-2,6-di-O-benzyl-β-D-galacto-pyranosyl)-(l→40)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4), with methyl 2,4,6-tri-O-benzoyl-3-O-benzyl-l-thio-β-D-galactopyranoside (8) or methyl O-(methyl 5-acetamido -4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-l-thio-β-D-galactopyranoside (9) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) or dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the corresponding [β-glycoside 10 and 18 in 66 and 62% yields, which were converted, via reductive removal of the benzyl groups, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and subsequent imidate formation, into the α-trichloroacetimidates 13 and 21. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (14) with 13 or 21 by use of trimethylsilyl trifluoromethanesulfonate gave the corresponding β-glycoside 15 and 22, which on channeling through selective reduction of die azido group, coupling of the thus formed amino group with octadecanoic acid, O-deacylation, and saponification of the methyl ester group, gave the tital gangliosides GM1 and GD1a.  相似文献   

20.
Abstract

O-(6-O-Benzoyl-β-d-galactopyranosyl)-(1→4)- and O-(2, 3, 4-tri-O-acetyl-β-d-galactopyranosyl)-(1→4)-2, 3, 6-tri-O-benzyl-N-benzyloxycarbonyl-1, 5-dideoxy-1, 5-imino-d-glucitols (4 and 12) were each coupled with methyl (methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid)onate (5) in acetonitrile medium in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) or N-iodosuccinimide/trifluoromethanesulfonic acid to give the corresponding α-sialyl-(2 → 3)- and α-sialyl-(2 → 6)-glycosides (6 and 13α), which were converted to novel ganglioside GM3-related trisaccharides (9 and 15) containing N-methyl-1-deoxynojirimycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号