首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

2.
Abstract

1,2-O-Cyclohexylidene-α-d-xylofuranuronic acid (2) has been converted into its 3-O-acetyl derivative and consecutively to the corresponding acid chloride and ethyl ester. Direct reaction of 2 with ethanol in the presence of p-to-luene sulphonic acid gave the ethyl ester. Reaction of 2 with phosphorus pentachloride in dry ether gave the acid chloride of 1,2-O-cyclohexylidene-3-O-dichlorophosphoryl–α-d-xylofuranuronic acid. Conformational data have been obtained from 1H and 13C NMR measurements.  相似文献   

3.
2′,3′-Dideoxy-2′-fluorokanamycin A (23) was prepared by condensation of 6-azido-4-0-benzoyl-2,3,6-trideoxy-2-fluoro-α-D-ribo-hexopyranosyl bromide (13) and a protected disaccharide (19). Methyl 4,6-0-benzylidene-3-deoxy-β-D-arabino-hexopyranoside (5) prepared from methyl 4,6-0-benzylidene-3-chloro-3-deoxy-β-D-allo-hexopyranoside (1) by oxidation with pyridinium chlorochromate followed by reduction with Na2 S2O4 was fluorinated with the DAST reagent to give methyl 4,6-O-benzylidene-2,3-dideoxy-2-fluoro-β-D-ribo-hexopyranoside (7). Successive treatment of 7 with NBS, NaN3 and SOBr2 gave 13. The structure of the final product (23) was determined by the 1H and 19F and shift-correlated 2D NMR spectra.  相似文献   

4.
The reaction of equimolar amounts of D-xylose and glycine in D2O at 68°C resulted in the formation of a twelve carbon compound, as a major product. No intermediate was detected in the formation of this dimer. The eneaminol, formed on reaction of 0.1 molar D-xylose and glycine in H2O, after six weeks was isolated and purified. Based on 1H and 13C NMR, spin echo Fourier transform experiments, and other spectroscopic techniques including FAB-MS and CI-MS of TMS derivative, the structure: N, N[1-deoxy-D-threo-pent-2-enitol, 1′-deoxy-β-D-threo-pentose (2′,5′)] glycine, was assigned to the product.  相似文献   

5.
Abstract

Selective glycosylation of benzyl 4,6-O-benzylidene-β-D-galacto-pyranoside (1) with 1.5 mole equivalent of 2,3,4,6-tetra-O-binzyl-α-D-galactopyranosyl bromide (2) catalyzed by halide ion gave the (1→2)-α-(5) and (l→3)-α-D-linked disaccharide (7) derivatives in 22 and 40% yields, respectively. The D-galactose unit at the reducing end of 2-O-α-D-galactopyranosyl-D-galactose [11) at equilibrium in D2O was shown By 13C NMR spectroscopy to exist in the pyranose and furanose forms in the ratio of ~2:1.  相似文献   

6.
Reaction of methyl [benzyl 2-[(benzyloxycarbonyl)-amino]-3-chloro-2,3,4-trideoxy-β-L-threo-hex-4-enopyrano-sid]uronate,3,4-trideoxy-β-L-threo-hex-4-enopyranosidjuronate (7) with silver fluoride gave the 5-fluoro, 3,4-unsaturated uronate derivative 8, which, on treatment with methanolic ammonia, afforded the corresponding 5-meth-oxy, uronamide 9. The structures of 8 and 9 were confirmed by spectral data and by x-ray crystallographic analysis of 8. 1H NMR spectroscopy parameters for 9 and its diastercomen 11 have been used to probe the conformational preferences in solution.  相似文献   

7.
Abstract

Aldol reaction of 1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-erythro-pentofuranos-3-ulose (1) with acetone in the presence of aqueous K2CO3 afforded 3-C-acetonyl-1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-ribofuranose(2). Similar reaction of 1,2:5, 6-di-o-isopropylidene- α-D-ribo-hexofuranos-3-ulose (3) afforded 3-C-acetonyl-1,2:5, 6-di-o-isopropylidene- α-D-allofuranose (4) and (1R, 3R, 7R, 8S, 10R)-perhydro-8-hydroxy-5,5,10-trimethyl-2,4,6,11,14-pentaoxatetracyclo[8,3,1,01,8,03,7] tetradecane. The stereochemistry of the new chiral centers were determined by 1H NOE experiments.  相似文献   

8.
Abstract

Acid hydrolysis of 6-deoxy-1,2-O-isop ropylidene-α-d-xylo-hexo-furanos-5-ulose (4) yielded gummy 6-deoxy-d-xylo-hexos-5-ulose (1) as an isomeric mixture of two furanose forms, 6-deoxy-α-d-xylo-hexo-furanos-5-ulose and 6-deoxy-β-d-xylo-hexofuranos-5-ulose, and a pyranose structure 1R, 5R-6-deoxy-d-xylo-hexopyranos-5-ulose. The combined percentage (64%) of the furanoses represents an unusually large amount of free carbonyl form for a sugar when compared to simple hexoses and 2-hexuloses. Isomeric structures were determined in deuterium oxide solution by 1H and 13C NMR.  相似文献   

9.
Abstract

Regioselective cleavage of 1,6-anhydro-maltose (1) with periodate and the subsequent recyclization with nitromethane gave 1,6-anhydro-3′-deoxy-3′-nitro-disaccharides (3). Three diastereomers, prepared by benzylidenation of 3, were separated by column chromatography. Each of 4′,6′-O-benzylidene derivatives successively underwent debenzylidenation, reduction of the nitro group, and peracetylation to give 3′-acetamido-3′-deoxy-disaccharide derivatives (7, 8, and 9). The configurations of the 3-amino sugar moietres in 7 (D-gluco), 8 (D-manno) and 9 (D-galacto) were determined on the basis of the 1H NMR data. The main product (7) was further modified to the 6-deoxy-6-nitro derivative.  相似文献   

10.
Abstract

Melanoldins were Isolated 1n 36% yield w/w from molar solution of D-xylose and glydne-2-13C (A); D-xylose and glycine-l-13C (B); D-xylose-1-13C and glydne (C); D-xylose and glyclne (D); D-xylose and glycine-15N (E). Each solutTon was kept at 68[ddot]C until complete disappearance of xylose as evidenced by NMR. 13C and 15N solid state nuclear magnetic resonance and diffuse reflectance Infrared spectrometry were used in their structural elucidation before and after basic and add hydrolysis. Both C-1 and C-2 of glycine were Incorporated Into the polymers. In the 13C CP-MAS NMR spectra, C-1 gave a single peak in the polymer at 171.3 ppm, while C-2 gave three at 48.1, 31.2 and 22.5 ppm. Area measurements of the respective peaks Indicated that 50% of the Incorporated glycine had undergone decarboxylatlon. C-1 of xylose was Incorporated into the polymers mainly as two types of carbons at 68.8 ppm (CHOH, C-OH) and at 133.3 ppm (unsaturated C). Hydrolysis (6N HC1) led to a 20% reduction 1n weight of the melanoldlns, a decrease of 2% in C and 10% in N. 13C CP-MAS NMR revealed after hydrolysis of D, the disappearance of signals at 69, 110, 152, 172 and 200 ppm. Hydrolysis of A and B reduced all signals originating from C-1 and C-2 of glydne, while hydrolysis of C reduced only the signal of 68.8 ppm. 15N CP-MAS NMR of hydrolyzed E showed a greatly reduced amide resonance at 100 ppm, with more pyrrole or imino N. DR-IR showed a reduction 1n both the 1625 and 1550 cm-1 bands with a concurrent appearance of a 1715 cm-1 band.  相似文献   

11.
Abstract

The erythro and threo chiral C5 methyl ketones (4) and (5), prepared from the (2S, 3R)-methyl diel (1b), were converted into the phenylsulfenimines (6) and (7), which, in turn, on reaction with allyl-magnesiutn bromide, yielded after acid hydrolysis and benzoylation, the diastereoisomeric C8-N-aminodiol derivatives (9) and (11), with threo stereochemistry relative to positions 4 and 5. Ozonolysis of (9) and (11) yielded the l-arabino and l-xylo 3-O-methyl branched aminodeoxysugar derivatives (13) and (15), respectively. Using diallylzinc as the reagent, the diastereoisomeric erythro products (8) and (10) were obtained. The latter materials gave the l-ribo-and l-lyxo-(lL-vancosamine) derivatives (12) and (14) upon oxonolysis. The 1H and 13C NMR spectra of the four isomeric aminodeoxysugar derivatives (12)—(15) were discussed.  相似文献   

12.
Abstract

NMR spectra of crystalline α-D-glucose DH2O (1), α-D-glucose (2), and β-D-glucose (3) were examined by 13C cross polarization magic angle spinning (CPMAS) methods. Each of the three forms of glucose exhibited a distinctly different spectrum. Chemical interconversion of 2 and 3 as well as the in situ dehydration of 1 during the course of the CPMAS NMR experiment was monitored in the 13C spectra. Samples of 1, 2, and 3 specifically enriched at C-1 and C-6 with 13C yielded 13C spectra in which the resonances corresponding to the adjacent C-2 and C-5 carbons were not visible due to strong homonuclear 13C dipolar interactions with the high abundance label. Spectra of these analogues as well as the C-2 and C-3 labeled materials provided the complete 13C chemical shift assignments of crystalline 1 2, and 3. A comparison of the solid state and solution 13C spectra revealed substantial resonance shifts for each of the three structures examined.  相似文献   

13.
Eleven furanosyl 2′-deoxy-C-nucleosides with β-D-erythro, α-D-erythro and β-D-threo configurations have Been studied by IH and 13C NMR spectroscopy recorded in CDC13 and/or DMSO-d 6. Results obtained indicate that each of the three stereoisomeric configurations studied are identifiable by 1H and 13C NMR spectroscopy using a combination of coupling constant and chemical shift criteria.  相似文献   

14.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

15.
Partial deacetonation of 1-O-benzoyl-2,3:4,5-di-O-isopropylidene-β-D-fructopyranose (2) yielded the related 2,3-O-isopropylidene derivative (3) that was subsequently transformed into the corresponding 1-O-benzoyl-4,5-O-dibutylstannylene-2,3-O-isopropylidene-β-D-fructopyranose (4). Reaction of 4 with benzyl bromide proceeded with high regioselectivity to afford 1-O-benzoyl-5-O-benzyl-2/3-O-isopropylidene-β-D-fruc-topyranose (5) together with a small quantity of the 4-O-benzyl derivative (6). Oxidation of 5 gave the 4-oxo derivative (10) which was reduced to yield a mixture of 5 and its 4-epimer (11). Debenzylation of 11, followed by a debenzoylation reaction produced 2,3-O-isopropylidene-β-O-tagatopyranose (13). Aceto-nation of 13 yielded 1,2:3,4-di-O-isopropylidene-α-D-tagatofuranose (14). Structures and configurations of the above compounds were established on the basis of their analytical and spectroscopic data.  相似文献   

16.
Abstract

1,4-Dimethyl-2-phenyl-2-phosphabicyclo[2.2.1]heptane 2-oxide 1 was prepared by the reaction of 2,5-dimethyl-1,5-hexadiene with PhPCl2-AlCl3: stereo-assignments of the exo and endo isomers were established by 13C NMR spectroscopy (using lanthanide shift reagents) and by x-ray crystal structures. The isomers of 1 were separately reduced (phenylsilane) to give the phosphine derivative; in turn the phosphines were thermally equilibrated at 190°C to give a predominance (70%) of the exo-phenyl isomer.  相似文献   

17.
A useful synthesis of 3-hydroxy-4-chromanone (6) is not currently available. Lead tetraacetate oxidation of 4-chromanone (4) yields the C(3) acetoxy derivative but this compound could not be deacetylated to 6.1 Recently Donnelly and Maloney reported2 that the Algar-Flynn-Oyamada reaction (H2O2/CH3OH/NaOH), which is commonly used for the conversion of o-hydroxychalcones (1) into 3-hydroxyflavanone (2) and 3-hydroxyflavones (3), does not yield 6 when applied to o-hydroxya-crylophenone 1 (R = H). The authors found that under less basic conditions using K2CO3 some 6 is formed but the major product is catechol. These observations clearly indicate the necessity of developing a method for making 6. The present note describes a staightforward way of preparing 3-hydroxy-4-chromanone (6) in good yield.  相似文献   

18.
Abstract

Treatment of methyl 3,4-di-O-acyl-2,6-dideoxy-α-D-ribo-hexo-pyranoside 1 or 2 with trimethylsilyl halide leads to the formation of a complex mixture of α-D-ribo-hexopyranosyl halides 3 or 5 together with the educts 1 or 2 as well as their β-anomers 8 or 9. The bromides 3 and 5, suitable for glycosidations, are preferably obtained by reaction of the digitoxose acetate derivatives 6 and 7, respectively, which in turn are prepared from 1 and 2 by mild acetolysis. Further reaction of the halides 3 to 5 with trimethylsilyl halides gives rise to a quantitative formation of the 2,3,6-trideoxy-4-0-acyl-3-halo-α-D -arabino-hexopyranosyl halides 10 to 12. In another reaction sequence starting with the olivose triacetate 20 the formation of 10 via the halide 13 is demonstrated. Structural evidence for the halides 10 to 12 is given by 1H NMR data as well as by analyses of their glycosides 14 to 19. The results support a mechanistic interpretation for the formation of 10 to 12 via a 3,4-acetoxonium ion as the key intermediate obtained from 3 by an SNfi and from 13 and SN2i step. Final conversion into the terminal halodeoxy compounds 10 to 12 proceeds by and SN2 reaction with the halide ion.  相似文献   

19.
Abstract

Fully protected 1-thioglycopyranosyl esters of N-acylamino acids (5, 6, and 7) were prepared by condensation of methyl 2, 3, 4-tri-O-acetyl-1-thio-β-d–glucopyranuronate (1), 2, 3, 4-tri-O-acetyl-1-thio-l–arabinopyranose (2), and 2, 3, 4-tri-O-acetyl-1-thio-D-arabinopyranose (3) with pentachlorophenyl esters of N-acylamino acids in the presence of imidazole. The 13C NMR chemical shifts of the starting 1-thio sugars and the 1-thiol ester products are reported.  相似文献   

20.
The reaction of methyl or benzyl 3-azido-5-0-benzoyl-3,6-di-deoxy-α-L-talofuranoside with (diethylamino)sulfur trifluoride (DAST) in toluene at 60°C resulted in the formation of 3-azido-5-0-benzoyl-3,6-dideoxy-2-0-methyl (or 2-0-benzyl)-3β-L-galactofuranosyl fluoride in good yield. In this reaction the alkoxyl group at C-1 migrated to the C-2 position and a fluorine atom entered into the C-1 position. The furanosyl fluoride was converted, via reduction of the azido group followed by N-trifluoroacetylation, acetolysis, and O-deacetylation, into 3,6-dideoxy-2-0-methyl-3-trifluoroacet-amido-L-galactopyranose (2-methoxy-Daunosamine derivative).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号