首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The V9Mo6O40?Cr2(MoO4)3 system has been investigated using the differential thermal analysis (DTA) and X-ray phase diffraction methods. The system has been found not to be a real two-component system over the whole component system.  相似文献   

2.
3.
Journal of Solid State Electrochemistry - Pure and doped vanadium pentoxide (V2O5, V2O5/MoO3) thin films were prepared by sol-gel method and dip coating technique. Furthermore, they were...  相似文献   

4.
The structure and catalytic properties of binary dispersed oxide structures prepared by sequential deposition of VO(x) and MoO(x) or VO(x) and CrO(x) on Al(2)O(3) were examined using Raman and UV-visible spectroscopies, the dynamics of stoichiometric reduction in H(2), and the oxidative dehydrogenation of propane. VO(x) domains on Al(2)O(3) modified by an equivalent MoO(x) monolayer led to dispersed binary structures at all surface densities. MoO(x) layers led to higher reactivity for VO(x) domains present at low VO(x) surface densities by replacing V-O-Al structures with more reactive V-O-Mo species. At higher surface densities, V-O-V structures in prevalent polyvanadates were replaced with less reactive V-O-Mo, leading to lower reducibility and oxidative dehydrogenation rates. Raman, reduction, and UV-visible data indicate that polyvanadates predominant on Al(2)O(3) convert to dispersed binary oxide structures when MoO(x) is deposited before or after VO(x) deposition; these structures are less reducible and show higher UV-visible absorption energies than polyvanadate structures on Al(2)O(3). The deposition sequence in binary Mo-V catalysts did not lead to significant differences in structure or catalytic rates, suggesting that the two active oxide components become intimately mixed. The deposition of CrO(x) on Al(2)O(3) led to more reactive VO(x) domains than those deposited on pure Al(2)O(3) at similar VO(x) surface densities. At all surface densities, the replacement of V-O-Al or V-O-V structures with V-O-Cr increased the reducibility and catalytic reactivity of VO(x) domains; it also led to higher propene selectivities via the selective inhibition of secondary C(3)H(6) combustion pathways, prevalent in VO(x)-Al(2)O(3), and of C(3)H(8) combustion routes that lead to low alkene selectivities on CrO(x)-Al(2)O(3). VO(x) and CrO(x) mix significantly during synthesis or thermal treatment to form CrVO(4) domains. The deposition sequence, however, influences catalytic selectivities and reduction rates, suggesting the retention of some of the component deposited last as unmixed domains exposed at catalyst surfaces. These findings suggest that the reduction and catalytic properties of active VO(x) domains can be modified significantly by the formation of binary dispersed structures. VO(x)-CrO(x) structures, in particular, lead to higher oxidative dehydrogenation rates and selectivities than do VO(x) domains present at similar surface densities on pure Al(2)O(3) supports.  相似文献   

5.
The Gibbs energies of formation of MoO2 and Mo4O11 have been determined by means of e.m.f. measurements using the cells Mo, MoO2/ZrO2· CaO or ThO2· Y2O3/Fe0.95O, Fe and Fe, Fe0.95O/ZrO2· CaO/Mo4O11, MoO2. The data may be represented by the equations f ΔG0 〈MoO2〉 = −571.8 + 0.1662T ± 1.1 (kJ mol−1) between 1070 and 1320 K and fΔGoMo4O11〉 = −2743 + 0.853T ± 5 (kJ mol−1) between 840 and 1090 K. The enthalpies of formation and standard entropies of MoO2 and Mo4O11 at 298 K are calculated by second law evaluations. fΔH0298MoO2〉 = −(586 ± 3) kJmol−1S0298MoO2〉 = (49 ± 2) JK−1mol−1fΔH0298Mo4O11〉 = −(2807 ± 12) kJmol−1S0298Mo4O11〉 = (290 ± 15) JK−1mol−1 The Gibbs energies of formation of MoO2 and Mo4O11 are given by fΔG0MoO2〉 = −592 − 0.0387TlogT + 0.303T (kJmol−1) between 298 and 2000 K and fΔG0Mo4O11〉 = −2776 + 0.886T (kJmol−1) between 298 and 1091 K.  相似文献   

6.
Koo HJ  Whangbo MH 《Inorganic chemistry》2006,45(11):4440-4447
The spin-lattice models relevant for the magnetic oxides Rb2Cu2(MoO4)3, BaCu2V2O8, and KBa3Ca4Cu3V7O28 were determined by evaluating the relative strengths of the spin-exchange interactions between their Cu2+ ions on the basis of spin dimer analysis. Our study shows that the O-M-O bridges (M = V5+, Mo6+) between the magnetic ions Cu2+, provided by the MO4 tetrahedra, are crucial for the spin-exchange interactions and hence for deducing the spin-lattice models needed to interpret the magnetic properties of these oxides. The spin-lattice model of Rb2Cu2(MoO4)3 is not a uniform chain but two interpenetrating spin ladders that interact weakly with geometric spin frustration. The spin-lattice model of BaCu2V2O8 is an alternating chain as expected, but the spin-exchange paths responsible for it differ from those expected. With respect to the strongest spin exchange of BaCu2V2O8, the spin exchange of KBa3Ca4Cu3V7O28 is only slightly weaker, but the strongest spin exchange of Rb2Cu2(MoO4)3 is much weaker. This difference in the spin-exchange strengths is caused by the difference in the bridging modes of the MO4 tetrahedra leading to these spin-exchange interactions.  相似文献   

7.
Vanadia transport, which is a minor reaction flux in the solid state reaction between V2O5 and MoO3, was studied using chemical and neutron activation analyses and electron spectroscopy for chemical analysis. It was found that negligible quantities of vanadia were transferred in a molybdena briquette during the reaction. Vanadia was presumably localized in thin external layers of molybdena grains. The reaction potential difference U r across a Pt|MoO3|V2O5|Pt cell was studied. It was shown that in this cell U r was produced at the molybdena briquette and was due to vanadia transport. The U r value changed with time in two stages. The reaction potential difference U r was constant (or diminished slightly) at the first stage and dropped abruptly at the second stage. The duration of the first stage depended on the initial thickness of the MoO3 briquette: the thicker the briquette, the longer the U r value was nearly constant. Causes and probable mechanisms of U r generation are discussed in different terms: chemical reaction, variation of a O 2 at the boundary between the reaction product and initialoxides, or surface spreading of the minor (V2O5 or V9Mo6O40) diffusant. The last mechanism, which received the least study in the general case, was shown to be the most probable one for the reaction at hand. Electronic Publication  相似文献   

8.
In this work, the possible synergy effects between Bi2O3, MoO3 and V2O5, and between Bi2Mo3O12 and BiVO4, were investigated. The catalytic activity of the ??mechanical mixture?? of these compounds was measured. The mixture containing 36.96?mol% Bi2O3, 39.13?mol% MoO3 and 23.91?mol% V2O5 (21.43?mol% Bi2Mo3O12 and 78.57?mol% BiVO4), corresponding to the compound Bi1?x/3V1?x Mo x O4 with x?=?0.45 (Bi0.85V0.55Mo0.45O4), exhibited the highest activity for the selective oxidation of propylene to acrolein. The mixed sample prepared chemically by a sol?Cgel method possessed higher activity than that of mechanical mixtures.  相似文献   

9.
Differential thermal and phase X-ray analyses have shown that MoO3 and Fe2V4O13 form a solid substitution solution, in which Mo6+ ions are incorporate into the crystal lattice of Fe2V4O13 in place of V5+ ions. The solubility limit of MoO3 in Fe2V4O13 at ambient temperature is 18 mole % of MoO3. The phase equilibria in the system Fe2V4O13-FeVMoO7, were also studied. Results are presented in the form of a phase diagram.
Zusammenfassung Durch DTA und Röntgenphasenanalyse wurde gezeigt, daß MoO3 und Fe2V4O13 Substitutionsmischkristalle bilden, in denen Mo6+-Ionen anstelle von V5+-Ionen in das Kristallgitter von Fe2V4O13 eingebaut sind. Die Löslichkeitsgrenze von MoO3 in Fe2V4O13 beträgt bei Umgebungstemperatur 18 Mol-% MoO3. Ebenfalls wurden die Phasengleichgewichte im System Fe2V4O13-FeVMoO7 untersucht. Die Ergebnisse sind in Form eines Phasendiagramms dargestellt.

- , 3 Fe2V4O13 , o6+ V5– Fe2V4O13. 3 Fe2V4O13 18 %. Fe2V4O13-FeVMoO7 .
  相似文献   

10.
11.
Single crystals of the title compound are obtained from a melt of U3O8, MoO3, and excess Cs2CO3 (Pt crucible, 950 °C, 12 h, cooling rate 5 °C/h).  相似文献   

12.
13.
14.
Phase equilibria being established in the subsolidus area of the V2O5?Cr2(MoO4)3 system at the whole component concentration range have been studied basing on DTA and X-ray phase powder diffraction. It has been established that the system is not a real two-component system in the subsolidus area. The fact has been proved by the presence of fields in that area, where three solid phases remain in mutual equilibrium.  相似文献   

15.
通过高温固相反应合成了铌酸盐KCa2Nb3O10及Cr3+和Mo6+掺杂(摩尔分数5%)的KCa2Nb3O10,并通过离子交换反应制备出HCa2Nb3O10及Cr3+和Mo6+掺杂的HCa2Nb3O10,采用X射线衍射、原子吸收光谱、扫描电镜等对所制得的样品进行了表征.在甲醇为电子给体、Pt为助催化剂的情况下,研究了催化剂HCa2Nb3O10及Cr3+和Mo6+掺杂的HCa2Nb3O10在紫外光辐射下分解水产氢的光催化活性,并讨论了引起催化剂活性差异的原因.  相似文献   

16.
The phase equilibria established in solid state in the whole range of component concentrations in the Fe2(MoO4)3-V2O5 system were studied by DTA and X-ray powder diffraction. This system is not a real two-component system.
Zusammenfassung Im gesamten Konzentrationsbereich der Komponenten des Systems Fe2(MoO4)3-V2O5 wurde das im festen Aggregatzustand festgestellte Phasengleichgewicht mittels DTA und Pulverröntgendiffraktionsverfahren untersucht. Dieses System ist kein wirkliches Zweikomponentensystem.

F2(4)3-V2O5 . , .
  相似文献   

17.
The high-pressure behaviour of (NH(4))(2)V(3)O(8) with the fresnoite structure (P4bm, Z = 2) has been studied at room temperature with single-crystal X-ray diffraction in diamond anvil cells using laboratory and synchrotron facilities. At ambient conditions, the crystal structure is composed of layers of corner-sharing V(5+)O(4) tetrahedra and V(4+)O(5) square pyramids separated by layers of the NH(4)(+) cations. At about 3 GPa, there occurs a reversible first-order phase transition to a three-dimensional structure (P4/mbm, Z = 2) built of corner-sharing V(5+)O(5) trigonal bipyramids and V(4+)O(6) octahedra. The NH(4)(+) cations fill up the interstitial sites in the tunnels formed by the vanadate framework. Up to the phase transition, the a lattice parameter of the low-pressure polymorph does not change while the contraction perpendicular to the stacking of the V(3)O(8) slabs accounts entirely for the bulk compressibility. Above the phase transition, the a lattice parameter slightly expands. The structural features of the high-pressure phase of (NH(4))(2)V(3)O(8) are compared to those of other vanadium oxides.  相似文献   

18.
金属氧簇合物在催化、医药和材料等方面的应用越来越成为无机化学研究的热点[1~4]. 在众多的金属氧簇合物中, 只有几种双帽及四帽Keggin结构被合成出来[5 ~12], 而含有四帽假Keggin结构的钼钒氧簇合物尚未见报道.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号