首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B-Tris(alkylamino)-N-trialkyl-borazines and B-tris(arylamino)-N-triaryl-borazines may be prepared almost quantitatively by employing the appropriate stoichiometry in the reaction between boron trichloride and an alkyl- or aryl-amine. The borazines so formed react with boron trifluoride or boron trifluoride etherate to give good yields of the B-trifluoro-N-trialkyl- and B-trifluoro-N-triaryl-borazines. Using this methods, (CH3NBF)3, (p-ClC6H4NBF)3 and (C6F5NBF)3 have been prepared. The analogous reaction using (C6F5)3B as a route to B-tris(pentafluorophenyl)borazines was unsuccesful.  相似文献   

2.
Benzene, a common aromatic compound, can be converted into an unstable antiaromatic 8π‐electron intermediate through two‐electron reduction. However, as an isoelectronic equivalent of benzene, borazine (B3N3Ph6), having weak aromaticity, undergoes a totally different two‐electron reduction to afford (B3N3R6)2? homoaromatic compounds. Reported here is the synthesis of homoaromatic (B3N3Ph6)2? by the reduction of B3N3Ph6 with either potassium or rubidium in the presence of 18‐crown‐6 ether. Theoretical investigations illustrate that two electrons delocalize over the three boron atoms in (B3N3Ph6)2?, which is formed by the geometric and orbital reorganization and exhibits (π,σ)‐mixed homoaromaticity. Moreover, (B3N3Ph6)2? can act as a robust 2e reductant for unsaturated compounds, such as anthracene, chalcone, and tanshinones. This 2e reduction is of high efficiency and selectivity, proceeds under mild reaction conditions, and can regenerate neutral borazine.  相似文献   

3.
Benzene, a common aromatic compound, can be converted into an unstable antiaromatic 8π-electron intermediate through two-electron reduction. However, as an isoelectronic equivalent of benzene, borazine (B3N3Ph6), having weak aromaticity, undergoes a totally different two-electron reduction to afford (B3N3R6)2− homoaromatic compounds. Reported here is the synthesis of homoaromatic (B3N3Ph6)2− by the reduction of B3N3Ph6 with either potassium or rubidium in the presence of 18-crown-6 ether. Theoretical investigations illustrate that two electrons delocalize over the three boron atoms in (B3N3Ph6)2−, which is formed by the geometric and orbital reorganization and exhibits (π,σ)-mixed homoaromaticity. Moreover, (B3N3Ph6)2− can act as a robust 2e reductant for unsaturated compounds, such as anthracene, chalcone, and tanshinones. This 2e reduction is of high efficiency and selectivity, proceeds under mild reaction conditions, and can regenerate neutral borazine.  相似文献   

4.
Bis-(trimethylsilyl)acetamide (BSA) reacts with borazines [RNBX]3, R=H,X=F; R=CH3,X=F; R=C6H5,X=F and R=C6H5,X=Cl to the corresponding borazines,X=OSi(CH3)3. The1H-NMR signal of the Si(CH)3-groups of [C6H5NBOSi(CH3)3]3 is at abnormally high field. With [CH3NBCl]3,BSA forms borazines which contain both Si(CH3)3O- and O?C(CH3)=NSiR3 groups bonded to the boron atoms. With LiN[Si(CH3)3]2, [CH3NBCl]3 forms silylaminoboranes.1H-NMR, mass spectrometric and analytical data are reported.  相似文献   

5.
The doping of graphene molecules by borazine (B3N3) units may modify the electronic properties favorably. Therefore, the influence of the substitution of the central benzene ring of hexa‐peri‐hexabenzocoronene (HBC, C42H18) by an isoelectronic B3N3 ring resulting in C36B3N3H18 (B3N3HBC) is investigated by computational methods. For comparison, the isoelectronic and isosteric all‐B/N molecule B21N21H18 (termed BN) and its carbon derivative C6B18N18H18 (C6BN), obtained by substitution of a central B3N3 by a C6 ring, are also studied. The substitution of C6 in the HBC molecule by a B3N3 unit results in a significant change of the computed IR vibrational spectrum between 1400 and 1600 cm?1 due to the polarity of the borazine core. The properties of the BN molecule resemble those of hexagonal boron nitride, and substitution of the central B3N3 ring by C6 changes the computed IR vibrational spectrum only slightly. The allowed transitions to excited states associated with large oscillator strengths shift to higher energy upon going from HBC to B3N3HBC, but to lower energy upon going from BN to C6BN. The possibility of synthesis of B3N3HBC from hexaphenylborazine (HPB) using the Scholl reaction (CuCl2/AlCl3 in CS2) is investigated. Rather than the desired B3N3HBC an insoluble and X‐ray amorphous polymer P is obtained. Its analysis by IR and 11B magic angle spinning NMR spectroscopy reveals the presence of borazine units. The changes in the 11B quadrupolar coupling constant CQ, asymmetry parameter η, and isotropic chemical shift δiso(11B) with respect to HPB are in agreement with a structural model that includes B3N3HBC‐derived monomeric units in polymer P. This indicates that both intra‐ and intermolecular cyclodehydrogenation reactions take place during the Scholl reaction of HPB.  相似文献   

6.
Reaction of bis(diisopropylamino)(methylamino)borane, (NHiPr)2B(NHMe), with 2,4,6‐trichloroborazine (ClBNH)3 affords 2,4,6‐tri[bis(diisopropylamino)boryl(methylamino)]borazine, 2,4,6‐[(NiPr2)2B(Me)N]3B3N3H3, which is the first boryl‐borazine structurally characterized. According to the X‐ray single crystal structure and the chemical shifts of 11B NMR resonances of boron atoms, compared with the aminoborane and borazine analogs, the borazine and boryl π‐systems are not coplanar either in the solid state or in organic solution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
IR AND Mass Spectroscopic Studies Of Isotopically Substituted Arylborazines In the IR spectra of B-pentadeuterophenylborazines which have their highest BN-ring stretching mode near or below 1400 cm?1 a distinct coupling between this vibration and a C? C stretching mode of the C6 D5 group is observed. The mass spectra of phenyl substituted borazines contain strong peak groups of doubly charged ions if the phenyl rings are arranged coplanar to the borazine skelton. Noteworthy are ions in which such an arrangement is stabilised by exocyclic ring closure through loss of 3 radicals.  相似文献   

8.
Thermal silazane cleavage of dichloroboryldisilylamines (SiClmMe3?m)N(SiMe3)(BCl2) (1: m = 1; 2: m = 2) at 196 °C leads to the borazine derivates [(SiClmMe3?m)NB(ClnMe1?n)]3 (3: m = 1, n = 0.185; 4: m = 2, n = 0.111) characterized by NMR and IR spectroscopy and mass spectrometry. Single‐crystal X‐ray diffraction structure analyses reveal (BN)3 units with unusual twisted boat conformations in both compounds. Additionally, more detailed studies are done to clear up the function of the by‐products (SiClmMe3?m)N(SiClMe2)(BClMe) formed during the cyclization step leading to asymmetrically boron substituted borazine derivatives. The single‐source precursors 3 and 4 were cross‐linked with methylamine producing polymers 3P and 4P, which were transformed into black amorphous materials with ceramic yields of 20.8 % and 50.3 %, respectively. Ceramic 4C (Si1.00B0.98 N2.55 C1.37O0.05) was further investigated by 11B and 29Si magic angle spinning (MAS) NMR spectroscopy. A combined study of high‐temperature TG analyses and X‐ray powder diffraction analyses confirms the thermal stability of 4C up to 1670 °C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The borazine derivatives B, B′, B″‐tris[(trichlorosilyl)methyl]borazine [B{CH2(SiCl3)}NH]3 ( 1 ), and B, B′, B″‐tris[{dichloro(methyl)silyl}methyl]borazine [B{CH2(SiCl2CH3)}NH]3 ( 2 ) were prepared by reacting (Cl3Si)CH2(BCl2) ( 3 ) and [Cl2(CH3)Si]CH2(BCl2) ( 4 ) with hexamethyldisilazane (hmds), respectively. Both compounds, 1 and 2 crystallize in space group R3c with a = 1712.53(4), c = 1230.33(4) pm, Z = 6, R1 = 0.030, and a = 1713.8(2), c = 1258.7(2) pm, Z = 6, R1 = 0.034, respectively. According to the single crystal X‐ray diffraction analyses, the title compounds show a planar B3N3 six‐membered ring with B—N distances of 142.3(3) pm (point symmetry C3) and synfacial oriented substituents. The borazine derivatives have also been characterized by NMR and IR spectroscopy as well as by MS spectrometry.  相似文献   

10.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

11.
Proton NMR spectra are reported for 15N enriched borazine and a series of 15N enriched derivatives: N-methyl-borazine, N,N′-dimethylborazine and a new photochemical product, 1-methyl-2-aminoborazine. Chemical shifts for the ring (15N? H) protons have been measured. Using a Fourier transform spectrometer, fine structure in the 15N? H doublet is resolved. Ortho and meta ring proton and three-bond 15N to H coupling constants have been determined. Substituent effects on chemical shifts and coupling constants for borazine derivatives are compared with those for analogous benzene derivatives.  相似文献   

12.
Four NNN tridentate ligands L1–L4 containing 2‐methoxypyridylmethene or 2‐hydroxypyridylmethene fragment were synthesized and introduced to ruthenium centers. When (HOC5H3NCH2C5H3NC5H7N2) (L2) and (HOC5H3NCH2C5H3NC6H6N3) (L4) reacted with RuCl2(PPh3)3, two ruthenium chloride products Ru(L2)(PPh3)Cl2 ( 1 ) and Ru(L4)(PPh3)Cl2 ( 2 ) were isolated, respectively. Reactions of (MeOC5H3NCH2C5H3NC5H7N2) (L1) and (MeOC5H3NCH2C5H3NC6H6N3) (L3) with RuCl2(PPh3)3 in the presence of NH4PF6 generated two dicationic complexes [Ru(L1)2][PF6]2 ( 3 ) and [Ru(L3)2][PF6]2 ( 4 ), respectively. Complex 1 reacted with CO to afford product [Ru(L2)(PPh3)(CO)Cl][Cl]. The catalytic activity for transfer hydrogenation of ketones was investigated. Complex 1 showed the highest activity, with a turnover frequency value of 1.44 × 103 h?1 for acetophenone, while complexes 3 and 4 were not active.  相似文献   

13.
The Lewis acid B(C6F5)3 and the cyclic silane (ArN2Si)3 ( 1 ) (ArN=o-(CH3)2NCH2C6H4) are useful precursors to access the silylene(II)–borane adduct ArN2Si-B(C6F5)3 ( 2 ). Treatment of 2 with water led to coordination and gave the Lewis pair (ArN2H2O)Si-B(C6F5)3 ( 3 ) that exhibits a hydrogen-bond-stabilized silanol unit. It can be converted into the siloxane [(HArN)2SiOB(C6F5)3]2O ( 6 ) by dehydrogenation in the presence of a base. Heteronuclear NMR spectroscopic data to characterize the compounds were supported by quantum-chemical calculations.  相似文献   

14.
Structure of Diaza-diphosphetidin, [(C6F5)F2P? NCH3]2 The synthesis, n. m. r. spectra and crystal structure of the diaza-diphosphetidin, [(C6F5)F2P? NCH3]2, are reported.  相似文献   

15.
The 1H-NMR spectra of symmetric compounds with two phosphorus atoms of the type R? X? P? Y? P? X? R, R = CH3, C2H5, X = —, O, NCH3, NCH2—, Y = NCH3, have been determined. After elimination of eventual couplings within the alkyl protons these spectra always show triplets in the case of trivalent phosphorus and doublets in the case of pentavalent phosphorus atoms. Since this paper establishes an unequal coupling between the alkyl protons and the two phosphorus nuclei, it is concluded that these compounds show a degenerate, however deceivingly simple, coupling: The spectra of symmetric diorgano diphosphines can be interpreted via the same mechanism. Calculations to substantiate these findings are reported.  相似文献   

16.
{2‐(N,N‐Dimethylaminomethyl)phenyl}(di‐t‐butyl)tin(IV)chloride, {2‐[(CH3)2NCH2]C6H4}Sn(t‐Bu)2 Cl, has been prepared and characterized using NMR and crystallography. This is the first example of a triorganotin(IV) halide containing the 2‐[(CH3)2NCH2]C6H4—group as a C,N‐chelating ligand with a weak intramolecular Sn—N interaction because of the steric hindrance of t‐butyl groups. The interatomic Sn—N distance is elongated to 2.904(14) Å and the central tin atom is distorted trigonal bipyramidal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Mass spectra of closo-phosphorimide, P4(NCH3)6, closo-thiophorimides, P4(NCH3)6Sn with n ranging from 1 to 4 and closo-arsenimide As4(NCH3)6 were obtained, and systematic trends were recognised in their fragmentation patterns. The introduction of thiophosphoryl groups gives a superposition of the fragmentation modes indentified with P4(NCH3)6 and P4(NCH3)6Sn. The fragmentation paths are completely different from those of adamantane and its derivatives or hexamethylene teramimne.  相似文献   

18.
The NHC–borane adduct (IBn)BH3 ( 1 ) (NHC= N‐heterocyclic carbene; IBn=1,3‐dibenzylimidazol‐2ylidene) reacts with [Ph3C][B(C6F5)4] through sequential hydride abstraction and dehydrogenative cationic borylation(s) to give singly or doubly ring closed NHC–borenium salts 2 and 3 . The planar doubly ring closed product [C3H2(NCH2C6H4)2B][B(C6F5)4] is resistant to quaternization at boron by Et2O coordination, but forms classical Lewis acid–base adducts with the stronger donors Ph3P, Et3PO, or 1,4‐diazabicyclo[2.2.2]octane (DABCO). Treatment of 3 with tBu3P selectively yields the unusual oligomeric borenium salt trans‐[(C3H2(NCH2C6H4)2B)2(C3H2(NCHC6H4)2B)][B(C6F5)4] ( 7 ).  相似文献   

19.
The phosphines L1PPh2 (1) and L2PPh2 (2) containing different Y,C,Y‐chelating ligands, L1 = 2,6‐(tBuOCH2)2C6H3? and L2 = 2,6‐(Me2NCH2)2C6H3?, were treated with PdCl2 and di‐µ‐chloro‐bis[2‐[(N,N‐dimethylamino)methyl]phenyl‐C,N]‐dipalladium(II) and yielded complexes trans‐{[2,6‐(tBuOCH2)2C6H3]PPh2}2PdCl2 (3), {[2,6‐(Me2NCH2)2C6H3]PPh2} PdCl2 (4), {[2,6‐(tBuOCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (5) and {[2,6‐(Me2NCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (6) as the result of different ability of starting phosphines 1 and 2 to complex PdCl2. Compounds 3–6 were characterized by 1H, 13C, 31P NMR spectroscopy and ESI‐MS. The molecular structures of 3,4 and 6 were also determined by X‐ray diffraction analysis. The catalytic activity of complexes 3–6 was evaluated in the Suzuki‐Miyaura cross‐coupling reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Reaction of 1,1′-bis(diphenylphosphino)ferrocene (dppf) with [μ-(SCH2)2NCH2CH2OH]Fe2(CO)6 (A) or [μ-(SCH2)2NCH2CH2SAc]Fe2(CO)6 (C) in refluxing xylene yielded an intramolecular bridging complex [μ-(SCH2)2NCH2CH2OH]Fe2(CO)4(μ-dppf) (1) or [μ-(SCH2)2NCH2CH2SAc]Fe2(CO)4(μ-dppf) (2) in moderate yield. The structures of both complexes were fully characterized by spectroscopic methods and X-ray crystallography, and the electronic structure of 2 was further investigated by UV–vis. The cyclic voltammetry was conducted and the reduction of protons from CF3SO3H (TfOH), HBF4·Et2O, or CF3COOH (TFA) catalyzed by 2 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号