首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of the polymerization of methyl methacrylate with the VOCl3? AlEt3 catalyst system at 40°C in n-hexane have been studied. A linear dependence of rate of polymerization on the monomer and catalyst concentrations as well as an overall activation energy of 5.87 kcal/mole were found. Characterization of the structure of the polymer by NMR spectra revealed the presence of stereoblock units. The mechanism of polymerization is discussed in relation to the kinetic data obtained.  相似文献   

2.
Methyl methacrylate and p-fluorostyrene were polymerized with manganese (III) acetylacetonate–aluminum triethyl catalyst at 60°C in a benzene medium. Maximum activity was found at Al/Mn ratio of 4. Maximum percent conversion of polymer was obtained when the aging time of the catalyst was 10 min. The rate of polymerization was first order with respect to monomer. The rate of polymerization with respect to catalyst and cocatalyst were found to be 0.5 and 1.5, respectively. The overall energy of activation for the polymerization of methyl methacrylate and p-fluorostyrene were found to be 52.6 and 57.0 kJ/mole, respectively. A free-radical mechanism is postulated.  相似文献   

3.
A homogeneous catalyst system, Cr(C5H7O2)3–Al(C2H5)3, was used for the polymerization of methyl methacrylate. The yield of polymer increased up to an Al/Cr ratio of 12 and thereafter remained almost constant with increasing Al/Cr. The rate of polymerization increased linearly with increasing catalyst and monomer concentrations at Al/Cr = 12. The molecular weight, however, decreased with increasing catalyst concentration and increased with increasing monomer concentration, indicating anionic polymerization reaction. NMR studies of the polymers indicated the presence of a stereoblock structure, which changed to heteroblock structure in presence of triethylamine and hydroquinone as additives in the catalyst. In the light of these observations, the mechanism of the polymerization is discussed.  相似文献   

4.
The radical polymerization of methyl methacrylate catalyzed by systems based on the carborane complexes of ruthenium(III) is studied in the presence of a number of activating agents: tin 2-ethyl hexanoate, aluminum isopropoxide, isopropylamine, and AIBN. It is shown that in the presence of the systems under consideration, polymerization proceeds in a controlled mode via the ATRP mechanism (AGET or ICAR ATRP) at catalyst concentrations with ppm level relative to that of the monomer. As the degree of monomer conversion grows, the molecular weight of the polymer increases linearly while its polydispersity coefficients decrease linearly. The role of the mentioned agents is to transfer the catalyst to the active form containing a metal atom in the oxidation number +2 and able to interact with halogen-terminated dormant polymer chains. It is first shown that the carborane complexes of ruthenium(II) are applicable for the catalysis of controlled radical polymerization.  相似文献   

5.
The polymerization of methyl methacrylate with the VOCL3–ALEt2Br catalyst system in n-hexane has been studied. The first-order dependence of rate of polymerization on catalyst and monomer concentrations, activation energy of 6.67 kcal/mole, and NMR spectra of polymer lend support to a coordinate anionic mechanism of polymerization. It has been shown that the vanadium in V+2 oxidation state is less active than V+3 oxidation state of active complex.  相似文献   

6.
Aerosil is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene–Aerosil 300 system and the methyl methacrylate–Aerosil 300 system were similar to those of the styrene–silica gel and methyl methacrylate–silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene–silica gel and methyl methacrylate–silica gel systems the impurity and the presence of micropores have almost no effects on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene–Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization.  相似文献   

7.
Methyl methacrylate was polymerized at 40°C with the VCl4–AlEt3 catalyst system in n-hexane. The rate of polymerization was proportional to the catalyst and monomer concentration at Al/V ratio of 2, indicating a coordinate anionic mechanism of polymerization. NMR spectra were further used to confirm the mechanism of polymerization and stability of active sites responsible for isotacticity.  相似文献   

8.
Silica-supported bis(indenyl)– and bis(fluorenyl)–chromium catalysts show good activity in ethylene polymerization. For maximum productivity with the indenyl chromium catalyst, the silica must be dried, with higher dehydration temperatures giving a significant increase in polymerization activity. Less deactivation on thermal aging of the supported bis(indenyl)–chromium catalyst allows ethylene polymerization to proceed for many hours, which provides polyethylenes of low residual chromium content. In contrast to the behavior of supported chromocene catalysts, the indenyl–and fluorenyl–chromium catalysts require a higher hydrogen/ethylene ratio to achieve a specific polymer melt index. Nevertheless, highly saturated polyethylenes are produced with these new catalysts. This result indicates that chain transfer to hydrogen remains the major chain transfer reaction. Addition of cyclopentadiene to a supported indenyl–chromium catalyst provided a catalyst with a much higher transfer response to hydrogen. This result suggests that ligand exchange occurred, producing a supported chromocene catalyst. These overall results are consistent with an active-site model which comprises a supported divalent chromium center attached to an indenyl or fluorenyl ligand during the polymerization process. Polymerization is believed to occur by a coordinated anionic mechanism of the type previously discussed for a supported chromocene catalyst.  相似文献   

9.
A kinetic investigation of the alternating copolymerization of butadiene and methyl methacrylate with the use of a system of ethylaluminum dichloride and vanadyl chloride as a catalyst was undertaken. The relation between the polymer yield and the molar fraction of methyl methacrylate in the feed was examined by continuous variation of butadiene and methyl methacrylate, the concentrations of total monomer, ethylaluminum dichloride, and vanadyl chloride being kept constant. This continuous variation method revealed that the polymer yield attains its maximum value with a monomer feed containing less than the 0.5 molar fraction of methyl methacrylate. This value of the molar fraction of methyl methacrylate affording the maximum polymer yield decreased on increasing the total monomer concentration but was not changed on varying the concentration of ethylaluminum dichloride. The number of active species estimated from the relation between yield and molecular weight of the polymer was almost constant, regardless of the molar fraction of methyl methacrylate in the feed. Consequently, it can be said that the maximum polymer yield depends mainly on the propagation reaction, not on the initiation reaction or the termination reaction. Three types of the mechanism have been discussed for this alternating copolymerization: polymerization via alternating addition of butadiene and methyl methacrylate complexed with ethylaluminum dichloride by the Lewis-Mayo scheme; polymerization via the ternary intermediate of butadiene, methyl methacrylate, and ethylaluminum dichloride; polymerization via the complex formation of butadiene and methyl methacrylate complexed with ethylaluminum dichloride occurring only at the growing polymer radical. From the kinetic results obtained, it was shown that the first and third schemes are excluded, and polymerization by way of the ternary intermediate is compatible with the data.  相似文献   

10.
Nd(O-i-Pr)3-Al(i-Bu)3配位催化甲基丙烯酸甲酯聚合反应的研究   总被引:3,自引:1,他引:3  
甲基丙烯酸甲酯(MMA)能以自由基引发聚合,也能以格氏试剂、烷基锂或烷基铝引发阴离子聚合[1].六十年代来,ABE等人研究了Ti、V、Cr、Co、Mn等的Ziegler-Natta催化剂的催化聚合反应,提高聚合物的规整性[2].近年来出现了稀土配位催化聚合MMA及其它丙烯酸酯的报道[2~7],但较少有Nd(O-i-Pr)3配位催化MMA聚合的报道.  相似文献   

11.
Electron paramagnetic resonance (EPR) spectroscopy was applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and methyl acrylate (MA) in order to investigate the mechanism of the controlled/“living” radical polymerization system. Although initially only copper(I) species was added to the system as a catalyst, EPR signals of copper(II) species were observed during the polymerization of MMA initiated by ethyl 2-bromoisobutyrate and p-methylbenzenesulfonyl chloride, and polymerization of MA initiated by methyl 2-bromopropionate. As the polymerization proceeded, the concentration of copper(II) increased gradually until a steady state was reached. The EPR results indicate that 5–6% of copper(I) species converted to copper(II) species in polymerization of MMA and about 3% in polymerization of MA at 90°C.  相似文献   

12.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

13.
Nd(O i Pr)3 Al(i Bu)3配位催化甲基丙烯酸甲酯聚合反应的研究孙俊全(浙江大学高分子科学与工程系杭州310027)(中国科学院长春应化所稀土化学与物理开放实验室长春130022)关键词聚合反应,配位聚合,稀土催化剂,甲基丙烯酸甲酯,...  相似文献   

14.
The present paper describes studies carried out to determine the effect of structure on the free radical polymerization of vinyl monomers initiated by means of the hexakis(arylisocyano) derivatives of chromium (o) in which chlorine, methoxy, and methyl groups have been substituted into different positions of the benzene ring. The kinetics of the initiation reactions resembles that studied in detail for the parent compound hexakis(phenylisocyano) chromium (o). The observed changes in the initial rates of the polymerization of methyl methacrylate at 80°C in the presence of carbon tetrachloride can be accounted for by the electronic effects associated with these substituents. However, when steric overcrowding occurs, the initial rates of polymerization are reduced considerably. The results obtained confirm the mechanism of initiation proposed earlier in which the rate determining step is the Sn2 displacement of an arylisocyano ligand by a monomer or reactive solvent molecule. An attempt has been made to explain the increased rate of radical formation observed when chlorine is substituted into the benzene ring.  相似文献   

15.
The kinetics of the mechanism of the polymerization of methyl methacrylate initiated by the glycerol/Mn(III) acetate redox system has been investigated in aqueous sulfuric acid medium in the temperature range of 40 to 50 °C. The effects of glycerol, methyl methacrylate, metal ion, acetic acid, and sulfuric acid on the rates of polymerization have been studied. One striking observation is that the increase in monomer concentration steadily decreases the rate of polymerization, contrary to what was observed in the case of acrylonitrile. On the basis of these observations, an appropriate kinetic scheme and rate expression have been developed.  相似文献   

16.
Polymerization of isoprene in presence of a heterogeneous Ziegler-type catalyst system, Cr(AcAc)3–AlEt3, has been studied in benzene medium. The rate of polymerization is first-order with respect to catalyst as well as monomer concentration. The rate studies, activation energy, and polymer microstructures are reported in order to follow the probable mechanism of polymerization.  相似文献   

17.
The free radical polymerization of methyl methacrylate initiated by the hexakis (arylisocyano)chromium(0)-CCl4 system has been studied for a number of derivatives in which both chlorine and methyl groups have been introduced into the benzene ring. It has been found that single substituents in the benzene ring, irrespective of position, have little effect on the activity of the system other than that which can be explained by the electronic effects of these substituents. However, where steric overcrowding occurs it has been shown that the rate of initiation is reduced considerably. This confirms the established mechanism of initiation for this type of derivative.  相似文献   

18.
The polymerization of methyl methacrylate initiated with a peracid-type resin was studied. The peracid-type resin was prepared by the oxidation of cation-exchange resin (Amberlite IRC-50) with 60 wt-% aqueous hydrogen peroxide in the presence of p-toluenesulfonic acid. It was found that the peracid-type resin was effective as an initiator for polymerization of methyl methacrylate. The kinetic investigation indicated that this polymerization proceeded by a radical mechanism, and the overall activation energy of polymerization was 15.8 kcal/mole. No effect of macromolecular catalyst on steric structure of the resulting polymer was observed. Some graft polymer was formed in bulk polymerization. On the other hand, only a homopolymer was obtained in solution polymerization. From the results obtained, a possible mechanism of initiation with the peracid-type resin is proposed and discussed.  相似文献   

19.
Ln(acac)3—BuMgCl催化甲基丙烯酸甲酯聚合   总被引:2,自引:0,他引:2  
开发了催化甲基丙烯酸甲酯聚合的一类新型催化剂,由稀土乙酰基丙酮配合物Ln(acac)3和格氏试剂BuMgCl组成.研究了不同稀土元素、催化剂陈化时间和温度、溶剂、CCl4添加剂、聚合时间和温度的影响.结果表明,在石油醚中单体聚合转化率和聚合物相对分子质量高于芳烃和其它极性溶剂,过量BuMgCl可能起链转移作用,降低温度可提高聚合物的间同含量.  相似文献   

20.
Polymerization of vinyl monomers using oxidase as catalyst has been performed under argon in the presence of acetylacetone as a mediator and without the use of hydrogen peroxide. The polymerization of acrylamide was catalyzed by a laccase or sarcosine oxidase catalyst in distilled water and efficiently produced the polymer with high molecular weight. In the polymerization using the laccase catalyst, the effects of temperature, time, and amounts of enzyme and mediator have been systematically investigated. On the other hand, various other oxidases such as bilirubin, choline, and xanthine oxidases showed no or little activity for the vinyl polymerization. The laccase/acetylacetone catalyst induced the polymerization of methyl methacrylate and styrene in a mixture of water and tetrahydrofuran. Laccase alone also acted as a catalyst for the vinyl polymerization of acrylamide and methyl methacrylate without acetylacetone. In the polymerization of methyl methacrylate using lipoxidase as the catalyst in the presence of acetylacetone, the reaction occurred in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号