首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal behaviour of natural rubber/acrylonitrile butadiene rubber (NR/NBR) was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC) in terms of blend ratio, crosslinking systems, fillers and compatibilizer (neoprene) were analyzed. The presence of NBR markedly increases the thermal stability of their blends and it lies in between NR and NBR. DSC studies revealed the thermodynamic immiscibility of the NR/NBR blends by the presence of two distinct glass transition temperatures and the immiscibility was prominent even in the presence of a compatibilizer.  相似文献   

2.
The photo-oxidation of two copolymers of butadiene and acrylonitrile (NBR rubbers) with acrylonitrile contents of 21·7 wt% and 41·6 wt% was compared with the photo-oxidation of polybutadiene and polyacrylonitrile samples under the same experimental conditions. The general features of the photo-oxidation of NBR rubbers over the composition range studied reflect the behaviour of the pure homopolymers, polybutadiene and polyacrylonitrile. The main process observed is the photo-oxidation of butadiene units whereas the photo-oxidation of acrylonitrile units is negligible under the same experimental conditions.  相似文献   

3.
《先进技术聚合物》2018,29(8):2165-2173
Novel chlorinated acrylonitrile butadiene rubber (Cl‐NBR) was prepared from NBR by the alkaline hydrolysis of chloroform by using phase‐transfer catalysis. The formation of Cl‐NBR was monitored by 1H‐NMR, UV‐Vis, and Fourier transform infrared spectroscopic techniques. The percentage of chlorine attached to the rubber chain was estimated by Volhard method. The effect of polar groups on the structural and thermal properties of Cl‐NBR was analyzed by scanning electron microscopy, X‐ray diffraction analysis, differential scanning calorimetry, and thermogravimetric analysis studies. The flame retardant, oil resistance, cure behavior, and mechanical properties of chlorinated elastomer were also analyzed. The proton NMR revealed the attachment of chlorine in the backbone of NBR with new chemical shift values. The C‐Cl stretching of chlorinated NBR was confirmed from Fourier transform infrared. The UV spectrum also supported the formation of chlorinated unit in the NBR chain through the shifts and broadening of absorption peaks. The X‐ray diffraction analysis pattern indicated a decrease in the amorphous domain of NBR with an increase in the level of chemical modification. The increased glass transition temperature obtained from differential scanning calorimetry confirms the increased molecular rigidity of the chlorinated NBR and thermal transitions increased with increase in the level of chemical modification. The thermal stability of Cl‐NBR decreased with an increase in chlorine content. The flame and oil resistance of Cl‐NBR was greatly higher than pure NBR due to the increased polarity of modified rubber. The superior tensile strength of Cl‐NBR (4 times higher than pure NBR) and higher oil resistance find applications in pump diaphragms, aircraft hoses, oil‐lined tubing, and gaskets materials with the excellent flame resistant property.  相似文献   

4.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

5.
李志岩  杨震  张庆余 《化学学报》1999,57(9):1038-1042
针对二元共聚反应,在分批聚合中制备组成相同的共聚物,提出了为控制共聚物组成在反应过程中补加活性较大单体的计算方法。并根据这种方法合成了端羟基丁二烯-丙烯腈共低聚物。该方法也可用于其它二元共聚反应。  相似文献   

6.
Journal of Thermal Analysis and Calorimetry - A thermoplastic elastomeric blend from acrylonitrile butadiene rubber (NBR) and plasticized polyvinyl chloride (PVC) in the ratio (1:1) was prepared....  相似文献   

7.
The properties of chlorosulphonated polyethylene (CSM) rubber, acrylonitrile rubber (NBR) and their blend (50/50 w/w) were studied. Fourier transform infrared (FTIR) studies supported that CSM/NBR rubber blend is self curable, when cross-linking takes place between acrylonitrile groups of NBR and –SO2Cl groups or in situ generated allyl chloride moieties of CSM. The thermal stability of vulcanizates was analyzed in nitrogen by thermogravimetry. It was found that the initial degradation temperature of elastomer based on CSM rubber is lower than of pure NBR rubber. By adding NBR to CSM rubbers, the degradation temperature of crosslinked material increased, indicating higher thermal stability. The activation energy for the degradation are determined using the Arrhenius equation The activation energies for the rubber blends are higher than for elastomers based on pure rubbers. It was found that the mass loss of the blends at any temperature was between those of the pure rubbers. The differential scanning calorimetry (DSC) was used for the glass transition temperature determination. It is estimated thermodynamic immiscibility of NBR/CSM blend based on noticed two different glass transition temperatures, corresponding to CSM and NBR rubbers.  相似文献   

8.
Poly(butadiene‐co‐acrylonitrile) (NBR) nanoparticles were synthesized in a semibatch emulsion polymerization system using Gemini surfactant trimethylene‐1,3‐bis (dodecyldimethylammonium bromide), referred to as Gemini‐type surfactant (GS) 12‐3‐12, as the emulsifier. In this polymerization system, an enhanced decomposition rate of initiator ammonium persulfate was achieved even under the low temperature of 50 °C which is attributed to the acidic initiation environment provided using GS 12‐3‐12. The microstructure and copolymer composition of the polymer nanoparticles were characterized by Fourier‐transformed infrared and 1H nuclear magnetic resonance spectroscopy. The effects of the surfactant concentration on the particle size, zeta potential, polymerization conversion, copolymer composition, molecular weight, and glass transition temperature (Tg) were investigated. It was found that the particle diameter can be controlled by the surfactant concentration and monomer/water ratio and particle sizes below 20 nm can be reached. The obtained latex particles exhibit a spherical morphology. A kinetic study of the copolymerization reaction was carried out, which indicated that an azeotropic composition was produced. The synthesized fine NBR nanoparticles can be employed as the nano substrate for a subsequent hydrogenation process so as to overcome the challenge involved in the field of latex hydrogenation of polymers, which can be found in a related report: Organic Solvent‐Free Catalytic Hydrogenation of Diene‐based Polymer Nanoparticles in Latex Form: Part II. Kinetic Analysis and Mechanistic Study. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Poly(methyl methacrylate)–poly(acrylonitrile‐co‐butadiene) (PMMA–NBR) core–shell structured nanoparticles were prepared using a two‐stage semibatch microemulsion polymerization system with PMMA and NBR as the core and shell, respectively. The Gemini surfactant 12‐3‐12 was used as the emulsifier and found to impose a pronounced influence on the formation of core–shell nanoparticles. The spherical morphology of core–shell nanoparticles was observed. It was found that there exists an optimal MMA addition amount, which can result in the minimized size of PMMA–NBR core–shell nanoparticles. The formation mechanism of the core–shell structure and the interaction between the core and shell domains was illustrated. The PMMA–NBR nanosize latex can be used as the substrate for the following direct latex hydrogenation catalyzed by Wilkinson's catalyst to prepare the PMMA–HNBR (hydrogenated NBR) core–shell nanoparticles. The hydrogenation rate is rapid. In the absence of any organic solvent, the PMMA–HNBR nanoparticles with a size of 30.6 nm were obtained within 3 h using 0.9 wt % Wilkinson's catalyst at 130 °C under 1000 psi of H2. This study provides a new perspective in the chemical modification of NBR and shows promise in the realization of a “green” process for the commercial hydrogenation of unsaturated elastomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The radiation-induced polymerization of acrylonitrile with dissolved PMMA exhibits kinetics similar to those found with the pure monomer. The addition of PMMA to the monomer at first leads to an increase in polymerization rate; a maximum in rate is observed for 60 per cent acrylonitrile in the mixture. The unreacted PMMA was quantitatively extracted by toluene from the reaction mixture. In contrast, polyacrylonitrile could not be separated from the graft copolymer by fractional precipitation, presumably due to association of the graft copolymer with the precipitated homopolymer. The free radical yield of PMMA “GR effective” derived from these results was found to be 8 to 10 in mixtures containing small amounts of monomer. It rapidly decreased as the monomer concentration increased.The solubilities of the graft copolymers were characterized by the precipitation γ determined for several precipitants in DMF solutions. A maximum in solubility was found for copolymers containing 25 to 35 per cent acrylonitrile in DMF-alcohol mixtures. The glass transition temperatures (Tg) of the graft copolymers were measured using a penetrometer. Tg increased with the MMA content in the copolymer. A small minimum of Tg appeared to exist for copolymers containing 90 per cent acrylonitrile.  相似文献   

11.
The synthesis of styrene‐acrylonitrile copolymers by semicontinuous heterophase polymerization is reported here. The effect of feed composition at a fixed addition rate of monomer mixture on kinetics, particle size, polymer content, and molar masses, was studied. This process permits the synthesis of nanolatexes containing narrow size‐distribution particles with number‐average diameter (Dn) of about 18 nm, polymer content as high as 23 wt %, and copolymer‐to‐surfactant weight ratios between 23 and 25, depending on monomer feeding rate, which are larger than those reported for microemulsion copolymerization of several comonomers. Copolymers with homogeneous composition similar to the feeding monomers composition were obtained thorough the reaction, which is difficult to achieve by batch polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The terpolymerization of sulfur dioxide, butene-1 and acrylonitrile affords terpolymers containing equimolar amounts of sulfur dioxide and butene-1 with various acrylonitrile contents. Ultraviolet irradiation was found to accelerate the polymerization and decrease the acrylonitrile content in the polymer. This fact is interpreted by a mechanism through a copolymerization of sulfur dioxide–butene-1 complex and acrylonitrile, whereby the polymerizability of sulfur dioxide–butene-1 complexed monomer may be accelerated by ultraviolet light. In fact, a binary system of sulfur dioxide and butene-1 was found to be accelerated by ultraviolet irradiation, and it affords a maximum rate at a 1:1 composition of feed monomer. Ultraviolet light of 250–300 mμ wavelength is effective for the initiation and the propagation. This may be ascribed to the ultraviolet absorption of the sulfur dioxide–butene-1 complex. The temperature coefficient was measured in both dark and ultraviolet irradiation reactions. The ultraviolet irradiation enhances the reactivity of sulfur dioxide–butene-1 complexed monomer at low temperature. In the terpolymerization with sulfur dioxide, isoprene, and butadiene, the ratio of isoprene and butadiene in the terpolymer was not altered by ultraviolet irradiation because both monomers from complexes with sulfur dioxide, perhaps having the same temperature coefficient for the polymerization.  相似文献   

13.
The saturation swelling behavior of styrene and acrylonitrile (SAN) copolymer particles with a styrene (St) and acrylonitrile (AN) comonomer mixture was investigated experimentally. The effects of the copolymer composition and the compositional inhomogeneity in SAN Copolymer particles on their swelling behavior were examined. The experimental results show that both the copolymer composition and the compositional inhomogeneity in SAN copolymer particles have little or no influence on the swellability of SAN copolymer particles with a St and AN comonomer mixture, as long as the weight fraction of AN monomer units in SAN copolymer particles is less than a certain value between 0.6 and 0.8. With increasing AN content in the copolymer particles beyond this value, however, the swellability of SAN copolymer particles gradually decreases. Semiempirical equations are proposed, which correlate the saturation concentration of each monomer in SAN copolymer particles as a function of the comonomer composition in the monomer droplets and the overall copolymer composition in SAN copolymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The passage of an electrolytic current initiated polymerization of acrylonitrile with butadiene to form an alternating copolymer. The rate of polymerization increased with increase in current, but the copolymer composition was invariant with current and with degree of conversion. A mechanism is proposed based on donor–acceptor complexes. The formation of these is facilitated by the addition of ZnCl2 which forms an initial complex with the acrylonitrile. Polymerization of the donor–acceptor complexes is initiated by electrochemically generated transient species whose rate of formation is dependent on the current.  相似文献   

15.
The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0–100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.  相似文献   

16.
The copolymerization of acrylonitrile (AN) in dimethylformamide (DMF) was retarded by the presence of itaconic acid (IA) comonomer. Addition of TEA helped overcome the retardation at enhanced concentrations of IA in the feed. The monomer reactivity ratios determined by both terminal and penultimate models revealed that the overall monomer reactivity’s are practically unaffected by the presence of TEA. The penultimate-unit effect for radicals terminated in AN was enhanced by the presence of TEA. Higher TEA concentrations helped regain the reactivities of AN and IA to AN-radical to the state in pure DMF. The penultimate model could explain the feed-copolymer composition profile for the whole range. Whereas IA systematically retarded the polymerization rate at all concentration regime in DMF, it increased the rate at higher IA concentration in DMF/TEA system. For a given IA concentration, the polymerization rate decreased as the solvent is enriched in TEA. The copolymers synthesized in the presence of TEA, manifested higher cyclization temperature and consequently lower char residue, attributed to the incorporation of TEA in the polymer by means of salt formation with IA moiety camouflaging the catalytic effect of the -COOH group in cyclization reaction. 13C-NMR studies confirmed the incorporation of the TEA molecules in the polymer chain.  相似文献   

17.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

18.
In this work, polypropylene (PP)/ethylene-propylene-diene monomer (EPDM)/butadiene acrylonitrile rubber (NBR) TPVs with different EPDM/NBR ratios were prepared by the core-shell dynamic vulcanization. The relationship between the core-shell structure and mechanical properties of the TPVs were thoroughly investigated. The formation of core-shell structure by adding NBR is conducive to the mechanical properties of the TPVs. The ratio of EPDM to NBR has an important effect on the structure and performances of the final products, and there is a critical ratio for this effect change. Transmission electron microscope (TEM), tensile test, reprocessing test, ageing test, rheological behavior test and stress relaxation were used to characterize the morphology and properties of the TPVs in detail. It was found that when the ratio of EPDM/NBR was 2:4, the tensile strength increased by ~14% compared with PP/EPDM TPV without NBR. Meanwhile, the reprocessing properties, rheological characteristics and instantaneous tensile deformation, etc. all exhibited sudden changes at this critical ratio.  相似文献   

19.
The mechanism of emulsion polymerization of acrylonitrile has been studied by measuring by dilatometry and electron microscopy the adsorption of monomer into polymer particles and polymerization characteristics such as rate, degree of polymerization, the growth of the particle during polymerization, and the degree of dispersion. In the emulsion polymerization of acrylonitrile, new particles are formed during polymerization at a rate which is proportional to the rate of polymerization and the ratio of unreacted monomer. The total amount of monomer adsorbed on or in the polymer particles is rather small, but the concentration on or in the polymer particles is sufficiently high and proportional to the monomer concentration in aqueous phase. The polymerization proceeds concurrently on or in the polymer particles and in aqueous phase, but the three loci may be continuous rather than discrete. A reaction scheme is introduced here which shows the coexistence of polymerizations on or in the polymer particles and in the aqueous phase.  相似文献   

20.
This work proposes a simple method for improving the rubber to filler stress transfer in short pineapple leaf fiber-reinforced natural rubber (NR). This was achieved by replacing some of the non-polar NR by polar acrylonitrile butadiene rubber (NBR). The amount replaced was varied from 0% to 20% by weight. The mixing sequence was designed so that the fiber would be coated with polar NBR before being dispersed in the NR matrix. A comparison system in which the mixing was carried out in a single step was also examined. Despite the fact that the two rubbers are immiscible, it was found that significant improvement of the stress transfer in the low strain region can be obtained. The mixing sequence affected the mechanical properties of the resulting composites. It is concluded that frictional stress transfer between the immiscible rubbers contributes more to the total stress transfer than does the frictional stress transfer between non-polar NR and polar cellulose fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号