首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerization of propadiene to 1,2-polyallene by various Rh(I) based catalysts is described and discussed. Also the interrelations between these Rh(I) complexes are discussed and an overall reaction scheme is given. A mechanism is put forward in which the formation of a common intermediate from propadiene and different Rh(I) complexes is the rate determining step. It is found that the activity decreases in the order: cis-Rh(CO)2P(C6H5)3Cl > [Rh(CO)2Cl]2 > Rh(CO)3Cl. The complexes Rh[P(C6H5)3]2(CO)Cl and Rh[P(C6H5)3]3Cl proved to be inactive in the polymerization of propadiene.  相似文献   

2.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Chemistry of Polyfunctional Molecules. 82. New Rhodium(1) Chelate Complexes with N,N-Bis(diphenylphosphino) alkyl- and -arylamines . [Rh(μ-Cl)(CO)2]2 ( 1 ) reacts with (Ph2P)2NR (2, a: R = C6H5, b: R = p-C6H4CH3) in a molar ratio of 1:2 to give the square plane, ionic complexes [Rh{(PH2P)2NR}2] [cis-Rh(CO)2Cl2] ( 3a, b ). By the reactions of [Rh(μ-Cl)(C8H12)]2(C8H12 = 1.5-Cyclooctadiene) (4) with (Ph2P)2NR ( 2a–d ) (c: R = CH3, d: R = C2H5) in the molar ratios of 1:4 the square plane 1:1 electrolytes [Rh{(Ph2P)2NR}2]Cl ( 5a–d ) are obtained. Upon treatment of 5a–d in dichloromethane with CO the complexes [Rh(CO){(Ph2P)2NR}2]Cl ( 6a–d ) are formed. They are only stable in solution and in CO atmosphere and were identified by infrared spectroscopy. The new complexes have been characterized, as far as possible, by conductometry, IR; FIR, Raman, 31P-NMR, and 1H-NMR spectra.  相似文献   

4.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

5.
1,2,3,4,7,7-Hexafluorobicyclo[2.2.1]heptadiene (1) and 2,3-bis(trimethyltin)-1,4,5,6,7,7-hexafluorobicyclo[2.2.1]hepta-2,5-diene (2) react with [M(Ph3P)4] (M = Pt, Pd) to afford air-stable adducts. 2,3-Dichloro-1,4,5,6,7,7-hexafluorobicyclo[2.2.1]hepta-2,5-diene (3) gives only [PtCl2(PPh3)2] with [Pt(Ph3P)4], but a low yield of an adduct was obtained with [Pd(PPh3)4]. The diene 1 also reacts with Fe(CO)5 to form the complex [(C7H2F6)Fe(CO)4], and with [Rh(C2H4)2(acac)] to give [(C7H2F6)Rh(acac)] in which the diene acts as a bidentate ligand. Similar products could not be isolated from the reactions of 2 and 3. A stable adduct, believed to be [{C7F6(SnMe3)2}Rh(CO)2(μ-Cl)2Rh(CO)2] has been isolated from the reaction between 2 and [Rh(CO)2Cl]2. This adduct reacts with PPh3 to give the bridge-cleavage product [{C7F6(SnMe3)2}RhCl(CO)(PPh3)2]. Reaction of 1 with [Rh(CO)2Cl]2 gives an unstable adduct which could not be isolated, and 2 does not react at room temperature. The chloro derivative 3 reacts with [PdCl2(PhCN)2] to give the adduct [(C7F6Cl2)PdCl(PhCN)], but 1 and 2 do not react under similar conditions. Stable substitution products [(C7F6R2)M] (R = H, M = Fe(CO)2(η-C5H5); R = SnMe3, M = Fe(CO)2(η-C5H5), Mn(CO)5, Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2; R = Cl, M = Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2) have been isolated from the reactions of the dienes with carbonylmetal anions. Insertion of the CHCH bond occurs when 1 is heated with [MnMe(CO)5] to give [{C7F6H2C(O)Me}Mn(CO)4], and this, on reaction with either PPh3 or [Pt(PPh3)4], gives [(C7F6H2COMe)Mn(CO)4PPh3].  相似文献   

6.
The structure of one isomer of [Rh3Fe{P(C6H5)2}3(CO)8], synthesised by treatment of [ {Rh(CO)2Cl} 2] with [Fe(CO)4 {P(C6H5)2H} ] in the presence of a base, has been determined by single crystal X-ray diffration. This species rearranges in solution to a second isomer whose structure has been elucidated by 31P NMR spectral measurements. The reactions of these compounds with carbon monoxide are described.  相似文献   

7.
Fast atom bombardment (FAB) mass spectrometry has been used to examine a series of rhodium, iridium and platinum organimetallic complexes, in which a cumulene ligand is attached to the metal in either σ-or π-bonding fashion. The most intense ion formed in the rhodium and platinum series is the metal-bis(triphenylphosphine) ion, while the [Ir(P(C6H5)3)2CO]+ ion is most intense for the iridium series. The platinum complexes show the most intense molecular ion peaks (up to 35% relative intensity), while the rhodium complexes show the least intense molecular ion peaks. The primary fragmentations of all these complexes occur at the metal-ligand bonds. The cumulenic ligand is lost as an impact unit in all cases. The FAB mass spectra of Rh(P(C6H5)3)3Cl (Wilkinson's catalyst), Ir(P(C6H5)3)2COCl (Vaska's compound), Rh(P(C6H5)3)2COCl and Pt(P(C6H5)3)2(C2H4)–synthetic precursors or related compounds to the organometallic complexes examined here–are included for comparison.  相似文献   

8.
The solvento species obtained by treatment of the complexes [Rh(1,5-cyclooctadiene)Cl]2, [Rh(norbornadiene)Cl]2, [Rh(CO)2Cl]2, C5H5Rh(CO)I2, [C5Me5RhCl2]2, and [Ru(C6H6)Cl2]2 with AgPF6 in acetone or acetonitrile react with a large excess of Me2NNS to give the compounds [Rh(1,5-C8H12)-(SNNMe2)2]PF6 (1a), [Rh(C7H8)(SNNMe2)2]PF6 (1b), [Rh(CO)2(SNNMe2)2]PF6 (2), [C5H5Rh(SNNMe2)3](PF6)2 (3), [C5Me5Rh(SNNMe2)3](PF6)2 (4), and [Ru(C6H6(SNNMe2)3](PF6) (5). If the thionitroso ligand is not preent in large excess decomposition often occurs. The use of AgClO4 allows isolation of the perchlorate salts of 1a, 1b, 2, 4, and 5, and the complexes [C5H5Rh-(SNNMe2)2(ClO4)ClO4 (6) and Rh(1,5-C8H12)(SNNMe2)(ClO4) (7). In the H1 NMR spectra the methyl protons of Me2NNS are observed as two quadruplets, in the range δ 3.75–4.25 (4J(HH) ca. 0.7 Hz) because of restricted rotation around the NN bond. The rhodium(I) complexes (1a, 1b, and 2) reacts with PPh3 or p-tolylPPh2 to give labile products, and only [Rh(1,5-C8H12)(SNNMe2)(PPh3)]ClO4 (8) and [Rh(1,5-C8H12)(SNNMe2)(p-tolylPPh2)]ClO4 (9) were isolated and characterized.  相似文献   

9.
The cis‐[Rh(CO)2ClL] (1) complexes, where L = 2‐methylpyridine (a), 3‐methylpyridine (b), 4‐methylpyridine (c), 2‐phenylpyridine (d), 3‐phenylpyridine (e), 4‐phenylpyridine (f), undergo oxidative addition reactions with various electrophiles, like CH3I, C2H5I, C6H5CH2Cl or I2, to yield complexes of the types [Rh(CO)(COR)ClXL] (2) (where R = CH3 (i), C2H5 (ii), X = I; R = C6H5CH2 (iii), X = Cl) or [Rh(CO)ClI2L] (3) and [Rh(CO)2ClI2L] (4). The pseudo‐first‐order rate constants of CH3I addition with complexes 1 containing pyridine (g) and 2‐substituted pyridine (a and d) ligands were found to follow the order pyridine >2‐methylpyridine >2‐phenylpyridine. The catalytic activity of complexes 1 containing different pyridine ligands (a–g) on carbonylation of methanol was studied and, in general, a higher turnover number was obtained compared with that of the well‐known species [Rh(CO)2I2]?. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The half-sandwich type compounds C5H5Rh[P(OR)3]2 (R = CH3, C2H5, C6H5, p-CH3C6H4, p-ClC6H4) have been prepared from [(P(OR)3)2RhCl]2 and NaC5H5. The NMR. data as well as the IR. and mass spectra of the new compounds will be discussed. The preparation of C5H5Rh(CO)P(OC2H5)3 is also reported.  相似文献   

11.
The reactions of [Rh(CO)2Cl]2 with α-diimines, RN=CR′-CR′=NR (R = c-Hex, C6H5, p-C6H4OH, p-C6H4CH3, p-C6H4OCH3, R′ = H; R = c-Hex, C6H5, p-C6H4OH, p-C6H4OCH3; R′ = Me) in 2:1 Rh/R-dim ratio gave rise to ionic compounds [(CO)2Rh.R-dim(R′,R′)][Rh(CO)2Cl2] which have been characterized by elemental analyses, electrical conductivity, 1H-NMR and electronic and IR spectroscopy. Some of these complexes must involve some kind of metal-metal interaction. The complex [Rh(CO)2Cl.c-Hex-dim(H,H)] has been obtained by reaction of [Rh(CO)2Cl]2 with the c-Hex-dim(H,H) ligand in 1:1 Rh/R-dim ratio. The reactions between [(CO)2Rh.R-dim(H,H)][Rh(CO)2Cl2](R = c-Hex or p-C6H4OCH3) with the dppe ligand have been studied. The known complex RhCl(CO)(PPh3)2 has been isolated from the reaction of [(CO)2Rh.R-dim(H,H)]-[Rh(CO)2Cl2] (R = c-Hex or p-C6H4OCH3) with PPh3 ligand.  相似文献   

12.
The tertiary phosphines P(C6H5)2R [RM π-C5H5)(CO)2 M(π-C5H5(CO)2 (M = Fe or Ru)] readily effect the displacement of the chloro group in [M′(φ-C5H5)(CO)2Cl] (M′ = Fe or Ru) to give bridged cationic species of the type [MM′(φ-C5H5)2(CO)4P(C6H5)]+. Treatment of [Fe2(CO)9] with P(C6H5)2R [RRu(φ-C5H5)(CO)2] leads to the formation of the neutral mixed-metal derivatives [FeRu(φ-C5H5)(CO)6P(C6H5)2] and [FeRu(φ-C5H5)(CO)5P(C6H5)2].  相似文献   

13.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

14.
The 7,8-B9C2H112- ion reacts with (Ph3P)2Rh(CO)Cl to form (B9C2H11)-Rh(Cl)(Ph3P)2. This rhodacarborane reacts with NaBPh4 to produce (B9C2H11-Rh(Ph3P)(Ph4B). The new metallocarboranes [(B9C2H11)Rh(Ph3P)(C6H6)]2 and (B9C2H11)Rh(H)(Ph3P) were obtained from the reaction of B9C2H112- and (Ph3P)3RhCl. The ruthenacarboranes (B9C2H11)Ru(CO)(Ph3P)2 and (B9C2H11-Ru(CO)3 · 0.5C6H6 were prepared from (Ph3P)Ru(CO)2Cl2 and [Ru(CO)3Cl2]2 respectively.  相似文献   

15.
The cyclopentadienylcobalt(I) compounds C5H5Co(PMe3)P(OR)3 (R = Me, Et, Pri) and C5H5Co(C2H4)L (L = PMe3, P(OMe)3, CO) are prepared by ligand substitution starting from C5H5Co(PMe3)2 and C5H5Co(C2H4)2. Whereas the reaction of C5H5Co(PMe3)P(OMe)3 with CH2Br2 mainly gives [C5H5CoBr(PMe3)P(OMe)3]Br, the dihalogenocobalt(III) complexes C5H5CoX2(PMe3) (X = Br, I) are obtained from C5H5Co(CO)PMe3 and CH2X2. Treatment of C5H5Co(CO)PMe3 or C5H5Co(C2H4)PMe3 with CH2ClI at low temperatures produces a mixture of C5H5CoCH2Cl(PMe3)I and C5H5CoCl(PMe3)I, which can be separated due to their different solubilities. The same reaction in the presence of ligand L gives the carbenoidcobalt(III) compounds [C5H5CoCH2Cl(PMe3)L]PF6 in nearly quantitative yields. If NEt3 is used as the Lewis base, the ylide complexes [C5H5Co(CH2PMe3)(PMe3)X]PF6 (X = Br, I) are obtained. The PF6 salts of the dications [C5H5Co(CH2PMe3)(PMe3)L]2+ (L = PMe3, P(OMe)3, CNMe) and [C5H5Co(CH2PMe3)(P(OMe)3)2]2+ are prepared either from [C5H5Co(CH2PMe3)(PMe3)X]+ and L, or more directly from C5H5Co(CO)PMe3, CH2X2 and PMe3 or P(OMe)3, respectively. The synthesis of C5H5CoCH2OMe(PMe3)I is also described.  相似文献   

16.
《Tetrahedron: Asymmetry》2001,12(4):633-642
Several monodentate phosphites derived from d-glucofuranose were prepared and examined as ligands in the rhodium catalysed enantioselective hydrosilylation of acetophenone. A substantial variation in the e.e. values, from racemic to 58% e.e., was seen depending on the nature of the phosphite ligand used and the ligand to metal ratio. The reactivity of the selected phosphite P(DAG)3 towards [Rh(μ-Cl)(COD)]2 and [Rh(μ-Cl)(C2H4)2]2 (DAG=(1:2;5:6)-di(O-isopropylidene)-d-glucofuranosyl) allowed the synthesis of monosubstitued Rh(Cl)(COD)P(dag)3 and [Rh(μ-Cl)(C2H4)P(dag)3]2 complexes, and the disubstituted Rh(Cl)(P(dag)3)2 and Rh(Cl)(C2H4)(P(dag)3)2 complexes. This study indicated that the disubstituted compounds offer better enantioselectivities than the monosubstituted ones.  相似文献   

17.
Summary Tetracoordinated complexes of the [Rh{P(OPh)3}3X] type (X=N3, NO2 or NCS) were obtained in the reaction of [Rh{P(OPh)3}3Cl] with NaX. Pentacoordinated [Rh{P(OPh)3}4X] complexes (X=HSO4, H2PO4, MeCO2, HCO2 or ClO4) were prepared by treating [Rh{P(OPh)3}3 {P(OC6H4)(OPh)2}] or [Rh(acac) {P(OPh)3}2]+P(OPh)3 (Hacac=acetylacetone) with acids HX.The groups of complex differ in reactivity towards CO and H2; [Rh{P(OPh)3}3X] complexes do not react with dihydrogen and with CO they produce [Rh{P(OPh)3}2(CO)X]. The [Rh{P(OPh)3}4X] complexes take up H2 reversibly, and with CO they give [Rh{P(OPh)3}3(CO)2X] compounds.  相似文献   

18.
Reactions of the 1,5-cyclooctadiene complex [C8H12RhCl]2 with the potassium polypyrazolylborates K[H4?nBPzn] (Pz = pyrazolyl, n = 2, 3 and 4; Pz = 3,5-dimethylpyrazolyl, n = 2 and 3) in ethereal solvents give the corresponding complexes C8H12RhPznBH4?n as stable yellow solids. Reaction of [Rh(CO)2Cl]2 with potassium bis(pyrazolyl)borate in hexane gives yellow H2B(C3H3N2)2Rh- (CO)2, but similar reactions of [Rh(CO)2Cl]2 with the other polypyrazolylborates lead only to decomposition at room temperature. The tris- and tetrakis(pyrazolyl)borate rhodium 1,5-cyclooctadiene complexes all appear stereochemically non-rigid at room temperature.  相似文献   

19.
The new complexes Ru(CO)35-(C2H3)2BCl] and [C5(CH3)5]Rh[η5-(C2H3)2BX] with XOCH3, CH3 and C6H5 are described.  相似文献   

20.
The tertiary phosphine π-C5H5Fe(CO)2P(C6H5)2 reacts with a suspension of Fe2(CO)9 in benzene to give the dinuclear complex π-C5H5Fe2P(C6H5)2(CO)6. This compound is also obtained by nucleophilic attack of [π-C5H5Fe(CO)2] on Fe(CO)4-[P(C6H5)2Cl] in tetrahydrofuran. Irradiation of a benzene solution of π-C5H5Fe2-P(C6H5)2(CO)6 with ultraviolet light affords π-C5H5Fe2P(C6H5)2(CO)5 which contains both a bridging carbonyl and a bridging phosphido group. The unstable bridged sulphido derivatives π-C5H5Fe2SR(CO)6 (R = CH3 and C6H5) and π-C5H5Fe2(t-C4H9S)(CO)5 are similarly obtained employing π-C5H5Fe(CO)2SR as ligand. The reactions of π-C5H5Fe2P(C6H5)2(CO)5 with tertiary phosphines and phosphites yield three types of products depending on the reaction conditions and the ligand involved. Examples include π-C5H5Fe2P(C6H5)2(CO)4P(C6H5)3, a mono-substituted derivative of π-C5H5Fe2P(C6H5)2(CO)5, and π-C5H5Fe2P(C6H5)2(CO)5P(C2H5)3 and π-C5H5Fe2P(C6H5)2(CO)4[P(OCH)3)3]2, mono- and bis-substituted derivatives of π-C5H5Fe2P(C6H5)2(CO)6, respectively. The reaction of π-C5H5Fe2P(C6H52(CO)5 with (C6H5)2PCH2P(C6H5)2 in benzene under reflux affords [π-C5H5Fe2P(C6H5)2(CO)4](C6H5)2PCH2P(C6H5)2 in which the ditertiary phosphine bridges two iron atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号