首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

Conformational investigations using 1D TOCSY and ROESY 1H NMR experiments on 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hexopyranosyl)-2-deoxy-β-D-glucopyranose (8) and related disaccharides showed that for steric reasons the C-linked hexopyranosyl ring occurs in the usually unfavoured 1C4 conformation and reconfirmed the structure of 1,3,4,6-tetra-O-acetyl-2-C-(4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-2-deoxy-β-D-glucopyranose (5). Glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (13) with acetate 8 using trimethylsilyl triflate as a catalyst afforded the α-D-linked tetrasaccharide 14. A remarkable side product in this reaction was the unsaturated tetrasaccharide 2,3,6-tri-O-benzyl-4-O-[4,6-di-O-acetyl-2,3-dideoxy-2-C-(4,6-di-O-acetyl-2,3-dideoxy-β-D-erythro-hexopyranosyl)-α-D-erythro-hex-2-enopyranosyl]-α-D-glucopyranosyl 2,3-di-O-benzyl-4,6-(R)-O-benzylidene-α-D-glucopyranoside (16) where in the C-linked hexopyranosyl ring an isomerization to the β-anomer had taken place to allow for the favoured 4C1 conformation. The tetrasaccharide 14 was deacetylated and hydrogenolyzed to form the fully deprotected tetrasaccharide 18. The 1 C 4 conformation of the C-glycosidic pyranose of this tetrasaccharide was maintained as shown by an in depth NMR analysis of its peracetate 19.  相似文献   

2.
ABSTRACT

3,6-Di-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-2-deoxy-2-hydroxyimino-α- and -β-D-arabino-hexopyranosides of N-benzyloxycarbonyl-L-serine methyl ester as well as of ethanol have been synthesised from D-lactal hexaacetate via nitrosyl chloride, followed by condensation with L-serine derivatives and ethanol, respectively. The compounds of L-serine thus obtained were modified at C-2 and C-3 to afford L-serine derivatives attached to disaccharides containing terminal α-D-gluco-, 2-acetamido-α-D-gluco-, β-D-manno, 2-acetamido-β-D-manno-pyranosyl, 3-azido-2-hydroxyimino-α-D-arabino-, and α-D-ribo-hexopyranosyl residues.  相似文献   

3.
Abstract

The readily available methyl (methyl 3-deoxy-5,8:7,9-di-O-isopropylidene-β-D-glycero-D-galacto-2-nonulopyranosid)onate (7) was converted in five synthetic steps into methyl (methyl 4-acetamido-3,4-dideoxy-β-D-glycero-D-talo-2-nonulopyranosid)onate (11). Selective protection of the C-4, C-7, C-8 and C-9 hydroxy groups of methyl (methyl 3-deoxy-8,9-O-isopropylidene-β-D-glycero-D-galacto-2-nonulpyranosid)onate (2) followed by oxidation of the C-5 hydroxy group and then its oximination gave 5-hydroxyimino derivatives (15 and 16).

  相似文献   

4.
Three new carbohydrates were isolated from the acidic hydrolysis part of the ethyl acetate extract of Cynanchum otophyllum Schneid (Asclepiadaceae) and one new carbohydrate from the ethyl acetate extract of Cynanchum paniculatum Kitagawa. Their structures were determined as methyl 2,6-dideoxy-3-O-methyl-α-D-arabino-hexopyranosyl-(1 → 4)-2,6-deoxy-3-O-methyl-β-D-arabino-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-D-arabino-hexopyranoside (1), ethyl 2,6-dideoxy-3-O-methyl-β-D-ribo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-l-lyxo-hexopyranoside (2), met hyl 2,6-dideoxy-3-O-methyl-α-l-ribo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-β-D-lyxo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-D-arabino-hexopyranoside (3), and 2,6-dideoxy-3-O-methyl-β-D-ribo-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α-d-arabino-hexopyranosyl-(1 → 4)-2,6-dideoxy-3-O-methyl-α -d-arabino-hexopyranose (4), respectively, by spectral methods.  相似文献   

5.
The synthesis of 3,5-dideoxy-1,2-O-isopropylidene-5-C-hydroxymethyl-β-D-erythro- (1) and α-L-threo-hexulopyranose (2) from 3-deoxy-1,2-O-isopropylidene-β-D-erythro-hexulopyranose (5) from D-fructose is described, as well as their respective transformation into 3,5-dideoxy-1,2-O-isopropylidene-5-C-hydroxymethyl-β-D-threo-(3) and -α-L-erythro-hexulopyranose (4) by inversion of configuration at C-4.  相似文献   

6.
Abstract

Dimeric methyl (3,4-di-O-acetyl-2-deoxy-2-nitroso-α-d-glucopyranosyl chloride)uronate (1) reacts with nucleophiles such as: ethanol, pyrazole, methyl N-tert-butyloxycarbonyl-L-serinate to give corresponding glycosides. The stereospecifity of the glycosidation reaction depends mainly on the employed nucleophile. The configuration and conformation of the obtained glycosides were established on the basis of 1H NMR and polarimetric data, and additionally the structure of 1-(methyl 3,4-di-O-acetyl-2-deoxy-2-(Z)-hydroxyimino-α-d-arabino-hexopyranosyluronate)pyrazole (6), was supported by X-ray diffraction data.  相似文献   

7.
Abstract

Four reactions were conducted in order to study the ability of a C-3 acyloxy group to control the stereoselectivity of glycosidation reactions in which the glycosyl donors were unsubstituted at c-2. These donors differed in the structure of the acyloxy group attached to C-3 (benzoyloxy or p-methoxybenzoyloxy) and in the identity of the leaving group (chloro or thiomethoxy) attached to the anomeric carbon. The stereoselectivity in all reactions was low; for example, treatment of 3,4-di-O-benzoyl-2,6-dideoxy-D-ribo-hexopyranosyl chloride (6) with methyl 4-O-benzoyl-2,6-dideoxy-α-D-lyxo-hexopyranoside (7) yielded a 2.2/1 (α/β) ratio of methyl 4-O-benzoyl-3-O-(3,4-di-O-benzoyl-2,6-dideoxy- α-D-ribo-hexopyranosyl-2,6-dideoxy-α-D-ribo-hexopyranoside (8) and methyl 4-O-benzoyl-3-O-(3,4-di-O-benzoyl-2,6-dideoxy-α-D-lyxo-hexopyranoside-2,6-dideoxy-α-D-lyxo-hexopyranoside (9). Formation of 1,5-anhydro-3,4-di-O-benzoyl-2,6-dideoxy-D-ribo-her-1-enitol (10) was a significant additional reaction. In reactions involving the thioglycosides only trace amounts of glycals were formed and approximately equal amounts of α and β anomers were produced. The significance of these reactions to participation by C-3 acyloxy groups is discussed.  相似文献   

8.
ABSTRACT

The synthesis of three 2,3-unsaturated 4-amino sugars 2-4 and cyclohexyl 2,3-di-O-acetyl-4,6-di-O-methyl-α-D-mannopyranoside 8 starting from cyclohexyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside 1 is described. The amino sugars were prepared by allylic substitution using a palladium catalyst.  相似文献   

9.
Abstract

An efficient procedure is described for the conversion of digitoxin (2) into 1,3,4-tri-O-benzoyl-2,6-dideoxy-β-D-ribo-hexopyranose (4). This conversion allows digitoxin (2) to become a viable source of 2,6-dideoxy sugars since the tribenzoate 4 is readily converted into synthetically useful derivatives. One type of derivative, exemplified by t-butyl 2,6-dideoxy-β-D-ribo-hexopyranoside (17), is an unprotected glycoside and thus easily permita structural modification at C-3 and C-4. A second type of derivative formed from 4 is one capable of glycosidic coupling at the anomeric carbon atom. Examples of this latter type are 3,4-di-O-benzoyl-2,6-dideoxy-α-D-ribo-hexopyranoayl chloride (7) and ethyl 3,4-di-O-benzoyl-2,6-dideoxy-1-thio-O-D-ribo-hexopyranoside (13).  相似文献   

10.
ABSTRACT

3-O-Benzyl-6-deoxy-1,2-O-isopropylidene-α-D-xylo-hexofuranos-5-ulose (1) and 3,6-dideoxy-1,2-O-isopropylidene-α-D-glycero-hex-3-enofuranos-5-ulose (6) reacted with carbon disulfide and methyl iodide under basic conditions to give the α-oxoketene-S,S-acetals 2 and 7, respectively. Treatment of 2 and 7 with hydrazine hydrate yielded the pyrazole derivatives 3 and 8, respectively.  相似文献   

11.
ABSTRACT

Treatment of methyl 2,3-di-O-benzyl-α-D-glucopyranoside (1), methyl 2,3-di-O-acetyl-α-D-glucopyranoside (4), 3-O-benzyl-1,2-O-(1-methylethylidene)-α-D-glucofuranose (6), 3-O-acetyl-1,2-O-(1-methylethylidene)-α-D-glucofuranose (9), 1,2-O-(1-methylethylidene)-α-D-xylofuranose (11) and methyl 2,3-di-O-acetyl-α-D-galactopyranoside (15) with diisopropylazodicarboxylate-triphenylphosphine in tetrahydrofuran led to the corresponding dioxaphosphoranes, which were opened by trimethylsilyl azide affording the silylated primary azidodeoxysugars. When the same reaction was performed on methyl 2,3-di-O-benzyl-α-D-galactopyranoside (20), an inversion of the regioselectivity of the dioxaphosphorane opening was observed, leading mainly to the 4-azido-4-deoxy-α-D-glucopyranoside derivative 27.  相似文献   

12.
Abstract

The regioselective enzymic hydrolysis of methyl 2,3-di-O-acetyl-5-deoxy-α-D-xylofuranoside (1) and methyl 2,3-di-O-acetyl-5-deoxy-β-D-xylofuranoside (2) in the presence of pig liver esterase (PLE) was studied by GLC. Diacetate 2 gave exclusively methyl 3-O-acetyl-5-deoxy-β-D-xylofuranoside (6) while diacetate 1 produced both methyl 2-O-acetyl-5-deoxy-α-D-xylofuranoside (3) and methyl 3-O-acetyl-5-deoxy-α-D- xylofuranoside (4) in low yield. At high conversion, methyl 5-deoxy-α-D-xylofuranoside (7) was the only product. The first-order rate constants, Michaelis constants, and maximal velocities were determined for 1, 2, and the monoacetates 3 - 6. The results were interpreted on the basis of a recent active-site model for PLE.  相似文献   

13.
Abstract

Synthesized from D-xylose, methyl 5-deoxy-α-D-xylofuranoside (1) and methyl 5-deoxy-β-D-xylofuranoside (2) were obtained in overall yields of 24 and 26 %, respectively. The key step in the synthesis was the separation of an anomeric mixture on a strong anion exchanger in OH? form. NMR data and mass spectra of title compounds 1, 2, methyl 2,3-di-O-acetyl-5-deoxy-α-D-xylofuranoside (3), and methyl 2,3-di-O-acetyl-5-deoxy-β-D-xylofuranoside (4) are discussed. The conformations of 1 and 2 were established from the best fit between calculated and experimental coupling constants using Karplus equation.  相似文献   

14.
The acid catalyzed reaction of 4,6-di-O-acetyl-3-deoxy-3-(ethoxycarbonylamino)-D-glucal and 6-chloropurine in nitrometliane solution gave 6-ehloro-9-(4′,6′-di-O-acetyl-2′,3′-dideoxy-3′-ethoxy-carbonylamino-α- and β-D-arafemohexopyranosyl)purine. These were converted to the corresponding deblocked 6-dimetliylaminopurine nucleosides by treatment with ethanolic dimethylamine; acetylation of these gave the respective 4′,6′-di-O-acetyl derivatives. The anomeric assignments for the nucleosides were based on their nmr spectral data.  相似文献   

15.
Abstract

10-O-(R/S)Tetrahydropyranosyl-β-rhodomycinone (5a,b) was prepared via 7,9-O-phenylboronyl-β-rhodomycinone (3) from β-rhodomycinone (1). Glycosidation of 5a,b with 3,4-di-O-acetyl-1,5-anhydro-2,6-dideoxy-L-arabino-hex-1-enitol (3,4-di-O-acetyl-L-rhamnal) (6) and 3,4-di-O-acetyl-1,5-anhydro-2,6-dideoxy-L-lyxo-hex-1-enitol (3,4-di-O-acetyl-L-fucal) (7) using N-iodosuccinimide gave the corresponding 7-O-glycosyl-β-rhodomycinones 8a,b, 9a,b and 10a,b, 11a,b. After cleavage of the THP-ether and O-deacetylation 7-O-(2,6-dideoxy-2-iodo-α-L-manno-hexopyranosyl)-β-rhodomycinone (14) and 7-O-(2,6-dideoxy-2-iodo-α-L-talo-hexopyranosyl)-β-rhodomycinone (16) were obtained.  相似文献   

16.
An unexpected epimerization resulting from the reaction of α-D-glucopyranosyl derivatives with DAST is described. The reaction of 3,4-di-O-acetyl-1,6-di-O-trityl-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-α-D-glucopyranoside (1), methyl 2,3-di-O-acetyl-6-O-trityl-α-D-glucopyranoside (6), 2,3-di-O-acetyl-6-O-trityl-α-D-glucopyranosyl 2,3-di-O-acetyl-6-O-trityl-α-D-glucopyranoside (13), and 2,3-di-O-acetyl-6-O-tert-butyldiphenylsilyl-α-D-glucopyranosyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside (14) with DAST at 0°C did not give the expected C-4 fluorodeoxy galacto derivatives, but instead, the corresponding 4-O-acetyl-3-hydroxy-α-D-galactopyranosides in yields of 52–78%. When the treatment of 6 was carried out at ?25°C for ~5 min the corresponding diastereomeric 4-O-diethylaminosulfinates (9a,b) were isolated as the major products (40%). Evidence suggests that the epimerization reaction most probably resulted from an intramolecular displacement of the intermediate diethylaminosulfur difluoride ester or diethylaminosulfinyl ester by the neighbouring acetoxy groups.  相似文献   

17.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

18.
Abstract

Four derivatives of β-maltosyl-(1→4)-trehalose were prepared, each with two deoxy functions in one of the constitutive disaccharide building blocks. 2,3-Di-O-acetyl-4,6-dideoxy-4,6-diiodo-α-D-galactopyranosyl- (1→4) ?1,2,3,6-tetra-O-acetyl-D-glucopyranose (3) was employed as a precursor for the 4?,6?-dideoxygenated tetrasaccharide 9: coupling of 3 with 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzylidene-α-D-glucopyranoside (4) furnished the tetrasaccharide 5 which was deiodinated and deprotected to yield the target tetrasaccharide 9. Secondly, the dideoxygenated maltose derivative 3-deoxy-4,6-O-isopropylidene-2-O-pivaloyl-β-D-glucopyranosyl- (1→4) ?1,6-anhydro-3-deoxy-2-O-pivaloyl-β-D-glucopyranose (10) was ring-opened to the anomeric acetate 11. A [2+2] block synthesis with 4 in TMS triflate mediated glycosylation gave a tetrasaccharide which was deprotected to the 3″,3?-dideoxygenated analogue of β-maltosyl-(1→4)-trehalose. For the third tetrasaccharide, 2,3,2″,3′-tetra-O-benzyl-α,α-trehalose was iodinated at the primary positions and deiodinated in the presence of palladium-on-carbon, then this acceptor was selectively glycosylated with hepta-O-acetyl-maltosyl bromide (20). Removal of protective groups furnished the maltosyl trehalose tetrasaccharide deoxygenated at positions C-6 and C-6′. to prepare a 3,3′-dideoxygenated trehalose, the free hydroxyl groups of 2-O-benzyl-4,6-O-(R)-benzylidene-α-D-glucopyranosyl 2-O-benzyl-4,6-O-(R)-benzylidene-α-D-glucopyranoside (25) were reduced by Barton-McCombie deoxygenation. One of the benzylidene groups was opened reductively with sodium cyanoborohydride. The resulting free hydroxyl group at the 4′-position was glycosylated in a Koenigs-Knorr reaction with 20 to yield the 3,3′-dideoxygenated tetrasaccharide 32, the fourth target oligosaccharide, after deprotection.  相似文献   

19.
Abstract

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at C-2 or C-2′ have been synthesized in [2+2] block syntheses. N-Iodosuccinimide-mediated coupling of tetra-O-benzyl-glucose to tri-O-acetyl-D-glucal followed by O-acetylation furnished 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranosyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside (7), which was used as a starting material for both tetrasaccharides. For the preparation of the 2′-monodeoxygenated saccharide the deoxyiodo pyranose moiety of 7 was further elaborated by de-O-acetylation, O-benzylidenation, O-benzylation, and selective reductive opening of the benzylidene acetal to give glycosyl acceptor 10. Glycosylation with hepta-O-acetylmaltosyl bromide and deprotection including removal of the iodo substituent afforded the 2′-deoxymaltosyl-(1→4)-trehalose 14. On the other hand, the non-iodinated pyranose moiety of 7 was transformed to a glycosyl acceptor. The removal of the benzyl groups of 7 necessitated also the reduction of the iodo group at this early stage. The resulting 3,4,6-tri-O-acetyl-2-deoxy-α-D-arabino-hexopyranosyl α-D-glucopyranoside was subjected to a similar reaction sequence as above to finally result in the 2-deoxymaltosyl-(1→4)-trehalose 22.

  相似文献   

20.
ABSTRACT

The four derivatives of β-maltosyl-(1→4)-trehalose have been synthesized, which are monodeoxygenated at the site of one of the primary hydroxyl groups. The tetrasaccharides were constructed in [2+2] block syntheses. Thus, 6′″-deoxy-β-maltosyl-(1→4)-trehalose was prepared by selective iodination of allyl 2,3,6,2′,3′-penta-O-acetyl-β-maltoside (3) followed by catalytic hydrogenolysis and coupling with 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (9), and 6″-deoxy-β-maltosyl-(1→4)-trehalose by selective iodination of allyl 4′,6′-O-isopropylidene-β-maltoside (14), coupling with 9, and one-step hydrogenolysis at the tetrasaccharide level. For the synthesis of 6′-deoxy-β-maltosyl-(1→4)-trehalose, the diol 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′-di-O-benzyl-α-D-glucopyranoside (22) was selectively iodinated and glycosylated with acetobromomaltose followed by catalytic hydrogenolysis. The 6-deoxy-β-maltosyl-(1→4)-trehalose was obtained upon selective iodination of a tetrasaccharide diol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号