首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This work describes the formation of highly efficient non-biofouling polymeric thin films of poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide), (poly(MPDSAH)). The poly(MPDSAH) films were generated from the self-assembled monolayers terminating in an initiator of atom transfer radical polymerization (ATRP) by the surface-initiated ATRP of MPDSAH. The poly(MPDSAH) films on a gold surface were characterized by ellipsometry, FT-IR spectroscopy, contact angle goniometery, and X-ray photoelectron spectroscopy. The copper complexes and unpolymerized monomers trapped inside the polymer brushes were completely washed out by soaking the poly(MPDSAH)-coated substrate in water at 40 degrees C for 4 days. The amount of proteins nonspecifically adsorbed onto the poly(MPDSAH) films was evaluated by surface plasmon resonance spectroscopy: the adsorption of proteins was <0.6 ng/cm(2) on the surfaces for all the model proteins. The ability of the poly(MPDSAH) films to resist the nonspecific adsorption of proteins was comparable to that of the best known systems.  相似文献   

2.
Thin films of different polymers - poly(styrene) (PS), poly(methylmethacrylate) (PMMA), poly(vinylcarbazole) (PVCz), poly(vinylchloride) (PVC) and poly(vinylidene fluoride) (PVDF) - were deposited by spin-coating or by vapor deposition. On these polymers, thin films of (hexadecafluorophthalocyaninato)-oxovanadium (F16PcVO) were prepared by physical vapor deposition. The growth of these films was monitored in situ by optical spectroscopy. The optical absorbance spectra were analyzed based on the coupling of transition dipoles to obtain information on the intermolecular arrangement of chromophores in the films. In all of these samples, the molecules are oriented with their molecular plane preferentially perpendicular to the substrate surface. This gives the desired overlap of the π-systems for electric conductance parallel to the substrate. Differences in the interactions were detected when deposition temperatures below or above the glass transition temperature of a given polymer were compared. The morphology of the polymer films and the deposited semiconductors were investigated by atomic force microscopy and scanning electron microscopy. The influence of the chosen substrate on the film structure is determined. The optical and electric properties of the films could thereby be influenced and the applicability of such films as active layers in organic thin film transistors is discussed.  相似文献   

3.
Features of the luminescence and absorption spectra of poly(biphenylene phthalide), poly(fluorenylene phthalide), and poly(terphenylene phthalide) films were analyzed. Experimental results obtained for these films by optical methods and thermally stimulated current spectroscopy were compared. Long-lasting afterglow emission from the films after photoexcitation was observed. Possible explanations for the observed optical and thermally stimulated processes in the poly(arylene phthalide)s were suggested in terms of reversible electronic phase transitions induced by external factors in unconjugated polymers.  相似文献   

4.
Ultra-thin films of precursor polymers for poly(benzimidazole) (PBI), poly(benzoxazole) (PBO), or poly(benzthiazole) (PBT) were formed at air/water interface by spreading monomers and then polymerizing on the water surface. These thin films could be deposited onto appropriate substrates such as quartz by using the Langmuir-Blodgett (LB) method of horizontal lifting. Moreover, the heat treatment of the built-up films of the precursor polymers transformed the films into corresponding PBI, PBO, or PBT, which were high-temperature polymers. The resulting films had uniform and controllable thickness. Electronic and opto-electronic properties of these thin films were evaluated in terms of electric conductivities and nonlinear optical properties.  相似文献   

5.
Highly stable covalently attached multilayer films were constructed by visible-light irradiation of hydrogen-bonding directed multilayer films of poly(allylamine) and poly(4-vinylphenol).  相似文献   

6.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

7.
Composite films of polyimide (PI) and poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) or of PI and poly(tetrafluoroethylene) (PTFE) were prepared by thermal imidization of the poly(amic acid) (PAA) precursors of poly(pyromellitic dianhydride-4,4′-oxydianiline) (PMPA-ODA) on glycidyl methacrylate (GMA) graft-copolymerized FEP and PTFE films. The resulting PI/GMA-g-FEP and PI/GMA-g-PTFE composites exhibited T-peel adhesion strength of approximately 7.0 and 6.5 N/cm, respectively, compared to negligible adhesion strength for the laminates prepared from thermal imidization of the PAA on the pristine and the Ar plasma-treated FEP and PTFE films. X-ray photoelectron spectroscopy (XPS) results revealed that both the PI/GMA-g-FEP and PI/FEP-g-PTFE composite films delaminated by cohesive failure inside the FEP and PTFE films, respectively. The so-delaminated PI films with a covalently tethered FEP or PTFE surface layer were highly hydrophobic, having static water contact angles above 140°. The highly hydrophobic property depends on both the composition and roughness of the delaminated surface.  相似文献   

8.
The present work describes experimental measurements of submolecular-level interaction energies involved in the process of peptide adsorption on polymer films using surface plasmon resonance spectroscopy. Gibbs energy change on adsorption (DeltaG(ad)) for tyrosine, phenylalanine, and glycine homopeptides were measured at 25 degrees C and pH 7 on highly uniform, nanothin polymer films, and the results were used to predict DeltaG(ad) for homologous homopeptides with a larger number of residue units. Nanothin poly(2-vinylpyridine), poly(styrene), and poly(1-benzyl-2-vinylpyridinium bromide) films were used for the adsorption studies; they were prepared using a graft polymerization methodology. In-situ swelling experiments were done with ellipsometry to examine the uniformity of the surfaces and to ensure that the graft densities of the different polymer films were similar to facilitate the comparison of adsorption results on these surfaces. The swelling experiments showed that the films were uniform, and the grafting densities were found to be 0.14-0.17 chains/nm(2). For uncharged surfaces, predicted and measured DeltaG(ads) values for homopeptides deviated by < or =4.9%. To extend this approach to a mixed-residue peptide, measurements were made for glycine, phenylalanine, and tyrosine-leucine subunits found in leucine enkephalin. The predicted DeltaG(ads) values for leucine enkephalin deviated by 3.0% and -9.1% for poly(2-vinylpyridine) and poly(styrene) films, respectively. Deviations between measured and predicted adsorption energies were larger for the charged poly(1-benzyl-2-vinylpyridinium bromide) surface relative to uncharged surfaces. While the adsorption energies were found to be additive within experimental uncertainties for the charged surface, generally speaking, measured uncertainty values were also larger for the charged surface.  相似文献   

9.
The FTIR spectra of poly(ether imide) films prepared from their chloroform solutions were recorded in a wide temperature interval. The cast films were shown to contain residual solvent. This residual solvent existed in films as unbound chloroform that may be removed by heating to 60–70°C and as bound chloroform that is involved in complex formation with polymers and may be removed by heating at temperatures close to their glass transition temperatures (180°C). Quantum-chemical calculations were performed for structures that model fragments and monomer units of poly(ether imides), as well as their complexes with chloroform. Chloroform was shown to be capable of preferential binding with an oxygen atom in a Ph-O-Ph′ fragment via hydrogen bonds. In this case, the conformational set of poly(ether imide) chains is changed. The above evidence is invoked to explain changes in transport characteristics with time for poly(ether imide) films cast from chloroform solutions.  相似文献   

10.
In-situ formation of polyimide was carried out in solution of copolymers derived from styrene and 4-vinylpyridine. The in-situ formed polyamic acid formed a strong hydrogen-bonding with pyridine moiety of the copolymers, resulting in homogeneous solutions. Cast films obtained from the solutions were clear and transparent without phase separations, and mechanical properties of the films were much stronger than those of films from the original copolymers. In-situ polymerization of acrylamide in poly(styrene) was carried out by anionic polymerization to form Nylon 3 which was dispersed in poly(styrene) as fine particles, and mechanical properties of the poly (styrene) were greatly improved.  相似文献   

11.
A stable monolayer of N-octadecylaniline containing stearic acid at the air-water interface has been obtained. However, the Langmuir monolayer of pure poly(N-octadecylaniline) was not stable, but mixed Langmuir-Blodgett films of this polymer with stearic acid in different ratios as a spreading aid were stable. The electrical conductivity of these films increased by five orders of magnitude after doping with iodine as compared to that before iodine doping (5.8x10(-7) S cm(-1)). Temperature-dependent electrical conductivity suggested that these films were semiconducting in nature with low thermal activation energy. Impedance analyses of these films revealed that the equivalent circuit for poly(N-octadecylaniline) was (RQ) whereas that for mixed poly(N-octadecylaniline) with stearic acid was (RQ)(RQ).  相似文献   

12.
含C60的聚电解质自组装膜微摩擦性能的研究   总被引:5,自引:0,他引:5  
通过自由基引发溶液聚合反应,合成星状C60-苯乙烯-丙烯酸聚合物,其钠盐作为高聚物负离子,与高聚物正离子的重氮树脂在云母上自组装成膜,利用紫外光照射反应,使膜层间连接的离子键转化成共价键.用原子力显微镜(AFM)和摩擦力显微镜(FFM)研究了不同链长和不同层数自组装膜的表面形貌及微摩擦性能.  相似文献   

13.
In the present work a series of poly(vinylidene fluoride)/BiFeO3/poly(ethylene glycol) composite films were prepared by solvent casting method with poly(vinylidene fluoride) as polymer matrix, bismuth ferrite as ceramic filler and poly(ethylene glycol) as binding agent as well as enhancer. The structural analysis of the composite films by X-ray diffraction confirms that the composites have a distorted rhombohedral structure. The micro-structural analysis shows that the use of poly(ethylene glycol)in the composite films enhances the homogeneity as well as compatibility of BiFeO3 particles within the poly(vinylidene fluoride) matrix. The dielectric and electrical study done by impedance analyzer reveals that with an increase in poly(ethylene glycol) concentration, there is a subsequent increase in dielectric constant as well as AC electrical conductivity. Finally, the ferroelectric behavior of the composite confirms that the ferroelectric properties of the composites are enhanced by the addition of BiFeO3 with an increase in poly(ethylene glycol) concentrations. These preliminary results give an idea for possible applications of this type of composites in the field of electronic applications.  相似文献   

14.
Photoactive nanostructured micellar films were prepared from the amphiphilic copolymer poly(sodium styrenesulfonate- stat-2-vinylnaphthalene) (PSSS- stat-VN) and cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) or poly(allylamine hydrochloride) (PAH) on quartz and silicon substrates via layer-by-layer (LbL) electrostatic self-assembly. The macromolecules of this amphiphilic copolymer adopt a coiled micellar conformation in aqueous solution that is preserved in the films as evidenced by atomic force microscopy (AFM) and spectroscopic studies. The hydrophobic domains present in the film can serve as host sites for various organic molecules. The probe molecules reside in those isolated nanosize domains. Their aggregation and quenching of their emission is eliminated. The experiments showed a regular growth of multilayer thickness and the content of solubilized compounds in the films. Thus, a defined amount of the hydrophobic compounds of interest may be introduced into these water-processable polymeric films. Some stratification of the films was induced by the presence of stiff nanoparticle-like micelles. That makes these films an important new material for studies of photoinduced energy and electron transfer.  相似文献   

15.
Nanostructured films from two conducting polymers, poly(o-methoxyaniline) (POMA) and poly(3-thiopheneacetic acid) (PTAA), were fabricated with the layer-by-layer (LBL) technique. The electrochemical response of the LBL films differs from that of a POMA cast film, even in a potential range where PTAA is inactive. This is attributed to differences in the diffusion-controlled charge and mass transport, where distinct ionic species participate in the LBL films, as demonstrated by quartz crystal microbalance measurements. The results show that the transport properties of conducting polymers can be changed by alternation with layers of appropriate materials in LBL films.  相似文献   

16.
The layer-by-layer (LbL) assembly of salt-containing nonstoichiometric polyelectrolyte complexes (PECs) with oppositely charged uncomplexed polyelectrolyte for the fabrication of dewetting-induced porous polymeric films has been systematically investigated. Salt-containing poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) complexes (noted as PAH-PAA) with a molar excess of PAH were LbL assembled with polyanion poly(sodium 4-styrenesulfonate) (PSS) to produce PSS/PAH-PAA films. The structure of the PAH-PAA complexes is dependent on the concentration of NaCl added to their aqueous dispersions, which can be used to tailor the structure of the LbL-assembled PSS/PAH-PAA films. Porous PSS/PAH-PAA films are fabricated when salt-containing PAH-PAA complexes with a large amount of added NaCl are used for LbL assembly with PSS. In-situ and ex-situ atomic force microscopy measurements disclose that the dewetting process composed of pore nucleation and pore growth steps leads to the formation of pores in the LbL-assembled PSS/PAH-PAA films. The present study provides a facile way to fabricate porous polymeric films by dewetting LbL-assembled polymeric films comprising salt-containing PECs.  相似文献   

17.
The polarity of polyelectrolyte (PE) multilayer films is investigated with pyrene as a polarity-sensitive probe. Multilayer films of poly(styrene sulfonate) (PSS) and various polycations were prepared by the layer-by-layer self-assembly technique. Pyrene (PY) molecules were inserted into the films by exposing the multilayers to pyrene solutions. By this method a homogeneous distribution of pyrene molecules at low concentration within the film was obtained. The ratio of the fluorescence intensities of the first (I) to the third (III) vibronic band (Py-value) of the pyrene emission spectrum is employed here to determine the polarity of the PE films. PSS and poly(allylamine hydrochloride) (PAH) multilayer films yielded a pyrene value close to the solvent polarity of acetone, while multilayers of PSS and poly(diallyldimethylammonium chloride) (PDADMAC) displayed a value higher than the one corresponding to water. The pyrene values of the polyelectrolyte films were independent from the solvent employed for probe dissolving. Although no direct relationship between solvent polarity and dielectric constant (epsilon) is available, an estimate of the static dielectric constant of the films can be provided by comparing the Py-values of the films with those of various solvents. Changes in the humidity conditions of the film environment in a closed cell did not affect the film polarity. However, a drastic and irreversible reduction of polarity could be induced by actively drying the samples by a nitrogen flow.  相似文献   

18.
通过BPO引发的溶液聚合 ,合成了水溶性的星状C6 0 苯乙烯 苯乙烯磺酸钠的三元共聚物 [Star shapedC6 0 poly(St SS) ],运用自组装技术 ,在水溶液中 ,含C6 0 的三元共聚物与重氮树脂 (Diazoresin)通过正负离子间的吸附力在云母基片上交替一层一层有序地组装成固体膜 .自组装膜经紫外光幅照反应 ,通过重氮基的分解 ,层间连接的离子键转变成共价键 ,从而增加薄膜的稳定性和堆砌密度 .用原子力显微镜 摩擦力显微镜(AFM FFM)考察了C6 0 在膜中的承载作用及比较不同链结构、不同链长、不同层数自组装膜的表面形貌和微摩擦性能 .初步的研究结果显示了聚合物薄膜的微摩擦性能与聚合物的化学结构、链长和膜的层数有密切关系  相似文献   

19.
Silver nanocomposite multilayer films were prepared through the in situ method. Multilayer thin films, prepared through the sequential electrostatic deposition of a positively charged third-generation poly(amidoamine) dendrimer (PAMAM) and negatively charged poly(styrenesulfonate) (PSS) and poly(acrylic acid) (PAA), were utilized as nanoreactors for the formation of silver nanoparticles. The silver ions were preorganized in layer-by-layer (LBL) films composed of PAMAM dendrimers and subsequently reduced with hydrogen to prepare the silver nanoparticles. The UV-vis spectrum and profilometer were used to characterize the regular growth of bilayers. UV-vis absorption from plasmon resonance at 435 nm and TEM images indicated the formation of the silver nanoparticles in the multilayer films. The silver nanocomposite LBL films were also constructed on the indium tin oxide-glass and investigated using cyclic voltammetry. The silver nanoparticles in the multilayer films have a stronger negative redox potential. The silver nanocomposite LBL films may have a potential application in the catalysis of reduction of 4-nitrophenol with sodium borohydride.  相似文献   

20.
采用溶液法制备了不同含量的聚甲基丙烯酸甲酯/聚偏二氟乙烯(PMMA/PVDF)共混薄膜,利用傅立叶变换红外光谱(FTIR)、X射线衍射谱(XRD)、和差热分析法(DSC)对共混薄膜的结晶行为进行了分析。结果表明,共混物中PMMA的含量对PVDF的β相构型有明显影响:PMMA/PVDF=30/70共混物中β相含量最高。为提高PVDF薄膜的铁电性能提供了新的研究方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号