首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexes Mo{HB(Me2pyz)3}(NO)XY {HB(Me2pyz)3  HB(3, 5-Me2C3HN2)3; X=Y=F, Cl or Br; X=F, Y=OEt, NHMe or SBun; X=Cl, Y=NHR (R=Me Et, Bun, Ph, p-MeC6H4), NMe2 and SR (R=Bun, C6H11, CH2Ph, Ph); X=Br, Y=NHMe, NMe2 and SBun} have been prepared and characterised spectroscopically. Their properties are generally similar to those of their iodo-analogues.  相似文献   

2.
Compounds of Germanium and Tin. 17 [1]. Alkylarylstannylene Complexes of Chromium and Molybdenum without Donor Stabilization Reaction of the complexes [(OC)5M(THF)], M = Cr, Mo, with the alkylarylstannylene RR′Sn: R = 2,4,6-tBu3C6H2, R′ = CH2C(CH3)2-3,5-tBu2C6H2, provides the donor-free stannylene complexes [(OC)5Cr?SnRR′] ( 6 ) and [(OC)5Mo?SnRR′] ( 8 ), respectively. The X-ray structure analyses of the isotypic compounds 6 and 8 reveal the three coordinate tin atoms in strictly planar environments and acute CSnC angles of 91.2° ( 6 ) and 91.3° ( 8 ).  相似文献   

3.
On Chalcogenolates. 128. Studies on Esters of N-Cyancarbamic Acid. 1. Synthesis and Properties of Ammonium Salts of N-Cyancarbamic Acid Esters and of the Ethyl Ester of N-Methyl N-Cyancarbamic Acid The reaction of NC? N(CO? OR)2 with NH3(g) yields NH4[NC? N? CO? OR], where R = CH3, C2H5, and C6H5. NH4[NC? N? CO? OC2H5] reacts with H3CI to form NC? N(CH3)? CO? OC2H5. The called compounds have been studied with chemical and spectroscopic methods.  相似文献   

4.
For studying the photochemistry of carbonyl chromophores in the side-chain, methacrylic esters of para-acylated 2-phenoxyethanols (CH2 = C(CH3) · CO · O · CH2 · CH2O · C6H4 · CO · R), soluble copolymers with styrene and soluble homopolymers were prepared. Comparison of low temperature emission spectra of model compounds, homopolymers and copolymers doped in polystyrene film indicated some interaction between the excited and the ground state structural units in homopolymers. Quantum yield of main chain scission of copolymers of styrene with monomers 1–3 (R = CH3, C2H5, C6H5) at 313 nm radiation in benzene were about 10?4; the cross-linking was the main reaction for copolymer styrene/monomer 4 (R = C6H5CH2). On exposure of copolymers styrene/monomers 1–4 and polystyrene doped with model compounds in film to 313 nm radiation in air, accelerated photo-oxidation occurs as well as cross-linking. Only chromophores of monomers 3 and 4 were effective as sensitizers of photochemical addition of maleic anhydride to benzene by radiation with γ > 340 nm. The difference in the efficiency between model compounds and copolymers on the one hand and a homopolymer on the other hand is due to self-quenching.  相似文献   

5.
Polysulfonyl Amines. XLVI. Molecular Adducts of Di(organosulfonyl)amines with Dimethyl Sulfoxide and Triphenylphosphine Oxide. X-Ray Structure Determination of Di(4-fluorobenzenesulfonyl)amine-Dimethyl Sulfoxide(2/1) From equimolar solutions of the respective components in CH2Cl2/petroleum ether, the following crystalline addition compounds were obtained: (X? C6H4SO2)2NH …? OS(CH3)2, where X = H, 4? CH3, 4? Cl, 4? Br, 4? I, 4? NO2 or 3? NO2; [(4? F? C6H4SO2)2NH]2 · (OS(CH)3)2 ( 8 ); (4? I? C6H4SO2)2NH · OP(C6H5)3. A (2/1) complex of (4? F? C6H4SO2)2NH with OP(C6H5)3 could not be isolated. The solid-state structure of the (2/1) compound 8 is compared with the known structure of the (1/1) complex (CH3SO2)2NH · OS(CH3)2. The crystallographic data for 8 at ?95°C are: monoclinic, space group C2/c, a = 2 369.9(13), b = 1 006.8(4), c = 2 772.6(13) pm, β = 110.71(4)°, U = 6.187 nm3, Z = 8. Two N? H …? O hydrogen bonds with N …? O 275 and 280 pm connect the disulfonylamine molecules with the dimethyl sulfoxide molecule. The O atom of the latter has a trigonal-planar environment consisting of the S atom and the two hydrogen bond H atoms.  相似文献   

6.
On Chalcogenolates. 151. Studies on Derivatives of N-Thioformyl Dithiocarbamic Acid. 1. Synthesis and Properties of N-Thioformyl Dithiocarbamates The N-thioformyl dithiocarbamates M[S2C? NH? CS? H], where M = K, Rb, Cs, Tl, NH4, [N(nC4H9)4], Na[S2C? NH? CS? H] · 0.5 H2O, and Ba[S2C? NH? CS? H]2 · 3 HO? CH2? CH2? OCH3 have been prepared by use of partial different procedures. The compounds were characterized with chemical and thermal methods as well as by means of electron absorption, infrared, nuclear magnetic resonance (1H and 13C), and mass spectra. Attempts to synthesize N-thioformyl dithiocarbamic acid were not successful.  相似文献   

7.
Trivalent-Pentavalent Phosphorus Compounds/Phosphazenes. IV. Preparation and Properties of New N-silylated Diphosphazenes Phosphazeno-phosphanes, R3P = N? P(OR′) 2 (R = CH3, N(CH3)2; R′ = CH2? CF3) react with trimethylazido silane to give N-silylated diphosphazenes, R3P = N? P(OR′)2 = N? Si(CH3)3 compounds decompose by atmospherical air to phosphazeno-phosphonamidic acid esters, R3 P?N? P(O)(O? CH2? CF3)(NH2). Thermolysis of diphosphazene R3P = N? P(OR′) 2 = N? Si(CH3)3 (R = CH3, R′ = CH2? CF3) produces phosphazenyl-phosphazenes [N?P(N?P(CH3)3)OR′] n. The compounds are characterized by elementary analysis, IR-, 1H-, 29Si-, 31P-n.m.r., and mass spectroscopy.  相似文献   

8.
Aminomethylation of Phosphoro-, Phosphono-, Phosphinoamidoates and -amidothioates Dialkylphosphoroamidates, alkyl-phosphonoamidates and phosphonoamidothioates react with C2H5O? CH2? NR2 and HCOH/HNR2, respectively, as like as a N-aminomethylation forming the corresponding derivatives of the general formula R2P(X)? NR′? CH2? NR″2? R = alkoxy, alkyl, aryl; R′ = H, alkyl; X = O, S; R″ = alkyl, cycloalkyl —. Under the same conditions phosphonodiamidoates and phosphonodiamidothioates yield RP(X)-[NR′? CH2? NR″2]2 or RP(X)? NHR′? (NR′? CH2? NR″2) only. These compounds are not formed by interactions of RP(X)(NR′? CH2OH)2 with sec. amines. The aminomethylation of (C6H5)2P(S)NH2 gives unexceptional [(C6H5)2P(S)]2N? CH2? NR′2. The i.r. and 1H-n.m.r. data of the prepared compounds, which can't be distilled mostly, are discussed.  相似文献   

9.
The reaction of acetylferrocene [Fe(η‐C5H5)(η‐C5H4COCH3)] (1) with (2‐isopropyl‐5‐methylphenoxy) acetic acid hydrazide [CH3C6H3CH(CH3)2OCH2CONHNH2] (2) in refluxing ethanol gives the stable light‐orange–brown Schiff base 1‐[(2‐isopropyl‐5‐methylphenoxy)hydrazono] ethyl ferrocene, [CH3C6H3CH(CH3)2OCH2CONHN?C(CH3)Fe(η‐C5H5)(η‐C5H4)] (3). Complex 3 has been characterized by elemental analysis, IR, 1H NMR and single crystal X‐ray diffraction study. It crystallizes in the monoclinic space group P21/n, with a = 9.6965(15), b = 7.4991(12), c = 29.698(7) Å, β = 99.010(13) °, V = 2132.8(7) Å3, Dcalc = 1.346 Mg m?3; absorption coefficient, 0.729 mm?1. The crystal structure clearly shows the characteristic [N? H···O] hydrogen bonding between the two adjacent molecules of 3. This acts as a bidentale ligand, which, on treatment with [Ru(CO)2Cl2] n, gives a stable bimetallic yellow–orange complex (4). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Seven R-di-(α-pyridyl) hydroperchlorates (R = (1) CH2, (2) NH, (3) CO, (4) (CH2)2, (5) (CH2)3, (6) (CH2)4 and (7) S-S) were prepared and studied in acetonitrile-d3 solutions by NMR and IR spectroscopy. With the hydroperchlorates of compounds 1 and 4, an equilibrium between non-hydrogen-bonded NH+ groups and intramolecular-bonded NH+ groups is present. With compounds 2, 3 and 5–7, the intramolecular hydrogen bonds are formed quantitatively. In compounds 4–7, the potential wells in these intramolecular structurally symmetrical N+H· N ? N · H+N bonds, are double minima. These hydrogen bonds are easily polarizable. With compounds 1–3, the distance between the N atoms given by the steric conditions of the molecules is smaller than with usual linear hydrogen bonds. Therefore, strong bent intramolecular structurally symmetrical hydrogen bonds are found, with relatively narrow single-minimum potential wells. These bonds cause a band in the region 3000–2500 cm?1 instead of the continuum. Thus they are not easily polarizable.  相似文献   

11.
The relative rate constants for the hydrogen atom abstraction by CCl3CH?CH· radical from CH2Cl2, CHCl3, CH3COCH3, CH3CN, C6H5CH3, C6H5OCH3, CH3CHO, and CH3OH in the liquid phase at 20°C have been measured. It was shown that these reaction rate constants are correlated by the two-parameter Taft equation with ρ* = 0.726 ± 0.096, r* = 1.22 ± 0.16. A relationship between r* and bond dissociation energy D(R? H) has been found for the abstraction reactions of different free radicals.  相似文献   

12.
Synthesis and Properties of the 1,3-Benzazaphospholes 1H-1,3-Benzazaphospholes (R = H, CH3, C6H5, N(CH3)2) are synthesized not only rom o-aminophenylphosphines and different cyclisation compounds such as R? C(OR)?NH · HCl, R? C(O)Cl, R? COOR′, R? C(OCH3)2NR′2, or Cl2C?N(CH3)2Cl but also from secondary o-aminophenylphosphines PRH? C6H4? NH2 (R = C6H5, C2H5) and CH3? C(OR)?NH · HCl under elimination of ether or from 1,3-benzazaphospholines after oxidation or thermal treatment. Whereas the 1,3-benzazaphospholes don't react with acetyl chloride or methyl iodide the N-acetyl- and P-methyl-1,3-benzazaphospholes are formed starting with the ambident anion. Further reactions of the 1,3-benzazaphospholes and the nmr data of the compounds prepared are discussed.   相似文献   

13.
Trivalent-Pentavalent Phosphorus Compounds/Phosphazenes. II. Synthesis of N-silylated Phosphinimines N-silylated phosphinimines (RO)3P?N? Si(CH3)3 (R = ? C2H5, ? C2H2F3, i-C3H7, n-C4H9) and (R2N)3P?N? Si(CH3)3 (R = ? C2H5) have been prepared by reaction of trialkyl phosphites P(OR)3 and Tris-(diethylamino)-phosphine P(NR2)3 with trimethylsilyl azide. The products were identified by analysis, IR-, 1H-, 19F-, 29Si-, 31P-n.m.r. and mass spectroscopy.  相似文献   

14.
Alkylammonium Hexachlorometallates. I. Crystallization Properties and Crystal Structure of Diethylenetriammonium Hexachlororhodate, [H3N(CH2)2NH2(CH2)2NH3][RhCl6] The reaction of RhCl3 · 3H2O with diethylenetriamine in 12 m hydrochloric acid yielded diethylenetriammonium hexachlororhodate [H3N(CH2)2NH2(CH2)2NH3][RhCl6] ( 1 ). Dark red single crystals of the compound were grown under hydrothermal conditions at a temperature interval of 180°C to 125°C in closed glass ampoules over several weeks (space group C2/c, a = 30.956(4) Å, b = 7.371(2) Å, c = 12.9736(15) Å, β = 113.787(11)°, Z = 8, 2385 reflections with I > 0, wR2(obs.) = 0.0279, R1(I > 2σ(I)) = 0.0271). The crystal structure is determined by a complex framework of hydrogen bonds between the hexachlororhodate anions and the diethylenetriammonium cations.  相似文献   

15.
The reactions of the salt (Bu4N)[2-B10H9O2C4H8] (1) with ammonia and ethylenediamine in ethanol were studied. These reactions afford substituted closo-decaborates with nitrogencontaining groups linked to the cluster through a diethylene glycol spacer. Using this method, we synthesized derivatives of the closo-decaborate anion with the pendant groups -NH3 + and -NHCH2CH2NH2; the complexes [Ni(H2O)(en)(L)] (7) and [Ni(en)(L)]·0.5H2O (8), where L = [2-B10H9O(CH2)2O(CH2)2NH(CH2)2NH2]2?, were synthesized. The X-ray diffraction study showed that the coordination sphere of the Ni2+ ions in complexes 7 and 8 have the same composition (4 N + 2 O). However, the coordination environment differs in the nature of the oxygen atom. Thus the oxygen atom directly bonded to the boron cluster is involved in the coordination of the metal ion in compound 8, whereas a water molecule is involved in the coordination in compound 7.  相似文献   

16.
The reactions of RCo(BDM1,3pn)(H2O) with light, heat, acids, electrophiles and nucleophiles were studied. (HBDM1,3pn is a mononegative, tetradentate dioxime-diimine ligand formed by condensing 2,3-butanedionemonoxime with 1,3-propanediamine in a 2/1 molar ratio; R = CH3, C2H5, n-C3H7, n-C4H9, and C6H3CH2-) Pyrolysis and photolysis of the alkyl complexes result in a cobalt(II) complex (anaerobic conditions) along with alkenes and alkanes. The major organic products from solid state pyrolysis at 200°C or photolysis in water are CH4 (R = CH3), C2H4 (R = C2H5), C3H6 (R = n-C3H7), C4H8 (R = n-C4H9) and (C6H5CH2)2 (R = C6H5CH2). No alkyl—cobalt bond cleavage occurs with acids or bases in most cases. Two exceptions are the reactions with 3 M HNO3 at 25°C and with 1 M NaOH at 52°C. Electrophiles like I2 cleave the alkyl—cobalt bond forming RI and CoIII (BDM1,3pn)I2. Nucleophilic reagents (N-) displace the H2O trans to the alkyl group to form RCo(BDM1,3pn)(N), but do not dealkylate the alkyl complex under the reaction conditions studied.  相似文献   

17.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

18.
Thiophosphinate Complexes of Lanthanides. I. Dimeric Dimethylthiophosphinate Compounds of LaIII, PrIII, NdIII, and ErIII By reaction of Na[(CH3)2POS] · 1,5 H2O with Ln(ClO4)3 (Ln ? La, Pr, Nd, Er) neutral dimeric complexes are formed. The crystal and molecular structures of [Pr((CH3)2POS)3(C2H5OH)(C3H7OH)]2, [Pr((CH3)2POS)3 · 3 H2O]2 · 4 H2O and [Er((CH3)2POS)3(H2O)2]2 have been determined by single crystal X-ray crystallography. The (CH3)2POS? ions are acting partly as bidentate chelates and partly as monodentate O-donors. The dimers are formed by doubly coordinating oxygen atoms of two ligands. Very strong intramolecular O? H…?S hydrogen bonds exist between noncoordinated S atoms and coordinated water molecules.  相似文献   

19.
Compounds of the composition RR′SiFNR″Si(CH3)3 (R = H, F, CH3, C2H5, C3H7, C2H3, C6H5, C(CH3)3; R = F, CH3, C6H5; R″ = CH3, C(CH3)3, Si(CH3)3) are obtained by the reaction of silicontetrafluoride or organo-substituted silicon-fluorides with the lithium salts of alkylsilylamines in a molar ratio of 11. The disubstituted compounds RSiF(NR′Si(CH3)3)2 (R = H, F, CH3, C2H3, C6H5; R′ = CH3, C(CH3)3) result when the reactants are in a 12 molar-ratio. Likewise the unsymmetrical siliconfluorsilylamines of the formulae F2Si(NRSi(CH3)3) (NR′Si(CH3)3) (R = CH3, R′ = C(CH3)3), as well as the trisubstituted compounds FSi(NCH3Si(CH3)3)3 and FSi(NCH3Si(CH3)3)2(N(Si(CH3)3)2) were made. By reacting phenyltrifluorsilane with dialkylamines (12) C6H5SiF2NR2(R = CH3, C2H5) was obtained. The IR-, mass-, 1H and 19F NMR spectra of the above-mentioned compounds are reported.  相似文献   

20.
Esters of the trimeric dithioformic acid [HCS(SR)]3 were prepared by interaction of K[HCS2] with alkyl iodides (R = CH3, C2H5). Orthoesters HC(SR)3 and di-orthoesters of the monomeric dithioformic acid were formed by reaction of formic acid with thioles (RSH mit R = CH3, C2H5, CH2C6H5) or dithioles (HS? (CH2)n? SH with n = 2, 3,4). The prepared compound were characterised by different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号