首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Block copolyurethanes with N-alkylated polyurethanes as nonself-associating soft segments are prepared. The polymers compare well in hydrolytic stability with block copoly(N-alkylamide urethane)s prepared in an earlier study but have better dimensional stability on exposure to moist heat. They show comparable hydrolytic stability and better oxidative stability than a poly(ether urethane) from the earlier study. The effect of different alkyl substituents on tensile properties and thermostability is studied. The tensile properties are also examined as a function of soft-segment molecular weight at constant weight-percent of hard-block. It is shown that yield stress and ultimate stress increase and elongations decrease as the soft-block M?n increases. DSC measurements do not generally show well defined endotherms with few exceptions but dynamic mechanical testing of some samples does show transitions between 14 and 23°C.  相似文献   

2.
New thermoplastic nonsegmented thiopolyurethanes were obtained from the low-melting aliphatic–aromatic thiodiols 4,4′-bis(2-hydroxyethylthiomethyl)benzophenone (BHEB), 4,4′-bis(3-hydroxypropylthiomethyl)benzophenone (BHPB), and 4,4′-bis(6-hydroxyhexylthiomethyl)benzenophenone(BHHB) as well as hexamethylene diisocyanate (HDI), both by melt and solution polymerization with dibutyltin dilaurate as the catalyst. The effect of various solvents on molecular-weight values was examined. The polymers with the highest reduced viscosities (0.63–0.88 dL/g) were obtained when the polymerization was carried out in a solution of tetrachloroethane, N,N-dimethylacetamide, and N,N-dimethylacetamide or N,N-dimethylformamide for BHEB-, BHPB-, and BHHB-derived polyurethanes, respectively. These polymers with a partially crystalline structure showed glass-transition temperatures (Tg) in the range of −1 to 39 °C, melting temperatures (Tm) in the range of 107 to 124 °C, and thermal stabilities up to 230 to 240 °C. The BHEB-derived polyurethane is a low-elasticity material with high tensile strength (ca. 50 MPa), whereas the BHPB- and BHHB-derived polyurethanes are more elastic, showing yield stress at approximately 16 MPa. We also obtained segmented polyurethanes by using BHHB, HDI, and 20 to 80 mol % poly(oxytetramethylene) glycol (PTMG) of n = 1000 as the soft segment. These are high-molecular thermoplastic elastomers that show a partially crystalline structure. Thermal properties were investigated by thermogravimetric analysis and differential scanning calorimetry. The increase in PTMG content decreases the definite Tg and increases the solubility of the polymers. These segmented polyurethanes exhibit the definite Tg (−67 to −62 °C) nearly independent of the hard-segment content up to approximately 50 wt %, indicating the existence of mainly phase-separated soft and hard segments. Shore A/D hardness and tensile properties were also determined. As the PTMG content increases, the hardness, modulus of elasticity, and tensile strength decrease, whereas elongation at break increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4140–4150, 1999  相似文献   

3.
庞勇  谭鸿 《高分子科学》2013,31(10):1451-1462
To better investigate the degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering, a series of new waterborne biodegradable polyurethanes (PEGPUs) with low degree of crosslinking was synthesized using IPDI, BDO and L-lysine as hard segments, PCL and PEG as soft segment. The bulk structures and properties of the prepared polyurethanes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), tensile mechanical tests and water contact angle (WCA) measurements. The degree of microphase separation was slightly improved because of the lowered crosslinking degree of these PEGPUs in comparison with the high cross-linking degree samples, leading to good mechanical properties, as indicated by DSC and stress-strain data. Moreover, biodegradability of the polyurethanes was evaluated in phosphate buffer solutions (PBS) under different pH values and enzymatic solution at pH 7.4 through weight loss monitoring. The results suggested that the degradation of these PEGPUs was closely related to their bulk and surface properties. And the degradation products didn’t show apparent inhibition effect against fibroblasts in vitro. These studies demonstrated that the waterborne biodegradable polyurethanes could find potential use in soft tissue engineering and tissue regeneration.  相似文献   

4.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

5.
Abstract

Water dispersible polyurethanes (PUs) were prepared from poly(hexamethylene carbonate) (PHC) diol, isophorone diisocyanates (IPDI), hexamethylene diisocyanate (HDI), and dimethylolpropionic acid (DMPA) as latent anionic sites. After neutralization of the carboxyl group from the DMPA unit with triethylamine (TEA), the PU anionomers were dispersed by adding water, following by crosslinking using triethylenetetramine (TETA). The particle size of the dispersion decreased with the content of DMPA and increased with HDI in the HDI-IPDI system, and it exhibited a minimum when the number-average molecular weight (M n) of the prepolymer was 3000 and 4500, respectively. PUs with a higher content of hard segments from DMPA or TETA, or with a higher content of IPDI rather than HDI, had higher tensile moduli and storage moduli at room temperature. Ultimate tensile properties increased with an increase of the prepolymer molecular weight and the DMPA and HDI content.  相似文献   

6.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

7.
A series of cross-linked polyimides (PIs) were prepared via two-step solution polycondensation from 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) and 2,5-furandicarboxylic acid-based diamines, N,N′-bis(4-amino-2-(trifluoromethyl)phenyl)furan-2,5-dicarboxamide (TFFDA) and N,N′-bis(4-aminophenyl)furan-2,5-dicarboxamide (p-FDDA), followed by thermal crosslinking reaction with bismaleimide. The thermal crosslinking reaction and its mechanism were studied by FTIR spectra and model reaction analysis, which showed Diels–Alder reaction between furan group and maleimide group played a main role in the thermal treatment. The properties of cross-linked PIs were characterized using dynamic mechanical thermal analysis, thermogravimetric analyses, tensile testing, ultraviolet-visible spectra, and wide-angle X-ray diffraction. The cross-linked polyimide film showed improved solvent-resistance, thermal and mechanical properties with Tg values of 234–306oC, tensile strengths of 82–98 MPa and moduli of 2.3–3.0 GPa.  相似文献   

8.
Several hydrogels were prepared using radiolytic polymerization of aqueous solutions of acrylamide or acrylamide containing appropriate comonomer such as acrylic acid, maleic acid, itaconic acid, and maleic anhydride. The hydrogels have been prepared at an irradiation dose of 30 kGy. The effects of the chemical structure of the monomer(s) and crosslinking agents on the yield of homopolymer(s) or copolymers have been studied. These crosslinking agents include N, N′‐methylene dimethacrylate (MDA) and N, N′‐methylene bisallyamide (MBA). The hydrogels obtained were characterized using swelling technique, thermal and spectroscopic analysis. The results obtained showed that the prepared samples are able to reject sodium ions and are not able to recover the Basic Blue Dye from their aqueous solution. © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Novel pH-sensitive hydrogels containing azoaromatic crosslinks were synthesized by the crosslinking of polymeric precursors. First, a reactive polymeric precursor was synthesized by copolymerization of N,N-dimethylacrylamide, N-tert-butylacrylamide, acrylic acid, and N-methacryloylglycylglycine p-nitrophenyl ester. The hydrogel was prepared in the second step by the reaction of the polymeric precursor with N,N′-(ω-aminocaproyl)-4,4′-diaminoazobenzene. The hydrogels were characterized by the network structure, (that is, content of crosslinks, unreacted pendent groups, and cycles), the equilibrium swelling ratio as a function of pH, modulus of elasticity in compression, and the degradability in vitro. The results obtained indicated that the hydrogel network structure strongly depends on the reaction conditions such as polymer concentration, and the ratio of the reactive groups during the crosslinking reaction. The swelling and mechanical properties of hydrogels can be controlled by the modification of polymer backbone structure and/or the crosslinking density. The rates of hydrogel degradation depended on their degree of swelling. The higher the degree of swelling, the higher the degradability. The properties of the hydrogels suggest that they have a potential as carriers for colon-specific drug delivery. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
All-cellulose nanocomposites using bacterial cellulose (BC) as a single raw material were prepared by a surface selective dissolution method. The effect of the immersion time of BC in the solvent (lithium chloride/N,N-dimethylacetamide) during preparation on the nanocomposite properties was investigated. The structure, morphology and mechanical properties of the nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, and tensile testing. The optimum immersion time of 10 min allowed the preparation of nanocomposites with an average tensile strength of 411 MPa and Young’s modulus of 18 GPa. With the longest immersion time of 60 min, the prepared composite sheet turns to express a very high toughness characteristic possessing a work-to-fracture as high as 16 MJ/m3. These biobased nanocomposites show high performances thanks to their unique structure and properties.  相似文献   

11.
We prepared N‐methyl‐substituted polyurethanes with different substitution degrees from sodium hydride, methyl p‐toluene sulfonate, and polyether–polyurethane containing poly(oxytetramethylene) glycol, 4,4′‐diphenylmethane diisocyanate, and 1,4‐butanediol. The chemical structures were characterized with Fourier transform infrared and 1H NMR. To investigate the effects of the N‐substitution degree on the morphology, thermal stability, and mechanical properties, we used differential scanning calorimetry, thermogravimetric analysis, and a universal testing machine. As the substitution degree increased, the new free (1708 cm?1) and bonded (1650 cm?1) carbonyl peaks increased. There was no bonded carbonyl peak in fully substituted polyurethane because the urethane groups had no hydrogen. At a small substitution degree, we observed a slight increase in the glass‐transition temperature and decrease in the endotherms of soft‐segment and hard‐segment domains due to the decrease in the hard‐segment domain and the increase in the urethane groups in the soft‐segment domain. The hard‐segment domain decreased and then disappeared as the N‐methyl substitution degree increased. These changes in the morphology resulted (1) in decreased modulus and tensile strength for the films because of the decrease in physical crosslinking points and (2) improved thermal stability as the substitution degree increased. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4077–4083, 2002  相似文献   

12.
Two series of linear polyesters containing isocyanurate rings have been prepared to determine the effect of structural variations on thermal and solubility properties. The polyesters were prepared by the polycondensation reaction of isocyanurate containing difunctional acid and ester monomers with linear diols. The substituent on the isocyanurate ring and the length of the acid side chain have been shown to have considerable effect on the glass transition temperature Tg. Different solubility properties were observed for the series of polyesters in which the pendant substituent was ? C6H5 and the acid side-chain was ? CH2CO2H. These polymers were insoluble in THF, and the polyester prepared from 1,6-hexanediol was also insoluble in chloroform. Thermal gravimetric analysis (TGA) indicated that structural differences had no significant effect on the thermal stability of these linear polyesters.  相似文献   

13.
In this work we propose a new crosslinking agent and the method to use it for the synthesis of acrylate based hydrogels. The use of this diacrylate of glycerol, synthesized in our laboratory, allows the generation of materials with well defined micro‐structures in the dry state, unique meso‐ and macro‐structures during swelling, and enhanced mechanical properties and swelling capacity in water. These properties depend on the crosslinking agent concentration, as well as synthesis thermal history. Poly(acrylamide‐co‐acrylic acid) hydrogels are commonly crosslinked with N, N′‐methylenebisacrylamide or N‐isopropylacrylamide. Here we obtain and use a new crosslinking agent, obtained from the reaction between glycerol and acrylic acid to produce a Diacrylate of glycerol (DAG). Two synthesis methods at equivalent molar ratio of acrylamide/acrylic acid (AM/AA) were analyzed. The mechanical properties, the swelling capacity, and the morphology at microscale of these hydrogels showed a well defined transition at a critical concentration of crosslinking agent. DAG induces the generation of hydrogels with hierarchichal structure. The micro‐structure surface morphology was investigated by scanning electron microscopy, the meso‐structure by polarized light microscopy and the macro‐structure by CCD imaging. The hydrogels with hierarchical structures showed improved mechanical properties when compared with structureless hydrogels. Control of the microstructure allows the generation of materials for different applications, i.e. templates or smart materials that interact with electromagnetic radiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2667–2679, 2008  相似文献   

14.
A series of segmented polyurea urethane and polyurea block copolymers based on a hexane diisocyanate (HDI) modified aminopropyl terminated polydimethylsiloxane soft segment was synthesized. The hard segments consisted of 4,4′-methylene diphenylene diisocyanate (MDI) which was chain extended with 1,4-butanediol (BD), N-methyldiethanolamine (MDEA), or ethylene diamine. Zwitterionomers were prepared by quaternizing the tertiary amine of the MDEA extended material with γ-propane sultone. The effect of chemical structure on the extent of phase separation and physical properties was studied using a variety of techniques including thermal analysis, dynamic mechanical spectroscopy, tensile testing, and small-angle x-ray scattering. It was observed that the compatibility between the nonpolar polydimethylsiloxane soft segments and the polar urethane hard segments was improved by inserting HDI linkages into the polydimethylsiloxane soft segments. The aggregation of hard segments was enhanced by increasing hard-segment content or by the introduction of ionic functionality. The tensile strength and modulus of these materials was higher than those of polyurethanes containing soft segments based on polydimethylsiloxane and its derivatives.  相似文献   

15.
The reaction of PbO with cyanuric acid was reported to give lead cyanurate, described in the literature as Pb3(O3C3N3)2 · 2H2O. Crystalline powders were prepared and investigated by X‐ray powder diffraction, yielding a monoclinic crystal structure (space group Cc, a = 16.6217(1) Å, b = 6.7161(1) Å, c = 12.4308(1) Å, β = 117.567(1)°). The structure solution and refinement yielded lead oxide isocyanurate corresponding to the formula Pb3O2(O3C3N3H2)2, with a layered arrangement of [Pb3O2]2+ ions and monovalent isocyanurate anions in an alternating fashion.  相似文献   

16.
Optically-active polyurethanes ( 2a-2c ) were prepared by polyaddition reaction of diamide ( 1a, 1b ) and diester ( 1c ) derivatives of chiral coumarin dimer with 4,4′-diphenylmethane diisocyanate (MDI) in chloroform and methyl ethyl ketone, respectively. The inherent viscosity of the polyurethanes are between 0.13 and 0.21 dL/g in N,N-dimethylacetamide (DMAc) at 30°C. Treated silica gels were absorbed with ca. 25 wt % of the polyurethanes, and packed as chiral stationary phases for direct optical resolution of 16 racemates with aromatic groups by high-performance liquid chromatography (HPLC). Polyurethanes 2a and 2b , obtained from diamide derivatives, show efficient resolution ability to some of the racemates (α = 1.06-1.79), especially the atropic ( R5 ) and trans ( R6-R9 ) isomers. The recognition ability of the polyurethanes can be attributed to the simultaneous aromatic stacking and hydrogen-bonding interactions with racemates. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
Isocyanate-terminated prepolymers were synthesized using poly(tetramethylene oxide)glycol of molecular weight 1000 (PTMG1000) with tolylene-2,4-diisocyanate (TDI). The prepolymers were chain extended with N-methyldiethanolamine (N-MDEA) to form polyurethanes containing tertiary nitrogen. These polyurethanes were crosslinked with bromine terminated polyurethane, poly(urethane-imide), and poly(urethane-siloxane) through the formation of cationomers at tertiary nitrogen sites across the backbone polyurethanes.

The crosslinked cationomeric polyurethanes were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), mechanical analyses, (static and dynamic), and static contact angles measurements. FTIR spectral studies confirms the formation of bromine terminated poly(urethane-imide) and poly(urethane-siloxane), as well as quaternization of the tertiary nitrogen which leads to crosslinking. A comparison of thermal stabilities of crosslinked polymers with respect to the chemical nature of bromine terminated prepolymers (BTP) indicates improved thermal stability for poly(urethane-imide) based ABCP. Stress-strain analysis shows high elongation values for poly(urethane-siloxane) and poly(urethane-imide) based ABCPs. Dynamic mechanical analysis reveals better damping for poly(urethane- siloxane) based AB crosslinked polymers.  相似文献   

18.
Novel linear homogeneous polyurethanes and polyureas with enhanced hydrophilic character have been successfully prepared from sugar‐based monomers having their hydroxyl groups free or partially protected. By the reaction of primary hydroxyl groups of xylitol with dimethyl hexamethylene dicarbamate (HMDC) or di‐tert‐butyl‐4,4′‐diphenyl methyl dicarbamate (MDC), two new linear semicrystalline polyurethanes [PU(X‐HMDC) and PU(X‐MDC)] have been prepared. Likewise, by the reaction of xylitol with the analogous diisocyanates hexamethylene diisocyanate (HMDI) or 4,4′‐methylenebis(phenyl isocyanate) (MDI), similar polyurethanes [PU(X‐HMDI) and PU(X‐MDI)] were obtained. However, these latter polyurethanes present some degree of crosslinking because of the higher reactivity of the diisocyanate comonomers. Linear hydrophilic polyureas having free hydroxyl groups joined to the main chain have also been prepared by the reaction of the same diisocyanates (HMDI and MDI) with 1,6‐diamino‐1,6‐dideoxy‐D ‐mannitol and 1,6‐diamino‐1,6‐dideoxy‐3:4‐O‐isopropylidene‐D ‐mannitol. As far as we are aware, this kind of polyhydroxylated polyurea has not been previously described in the literature. The new polymers were characterized by standard methods (elemental analyses, gel permeation chromatography, IR, and NMR). The polyurethanes were hydrolytically degradable under physiological conditions, in contrast with less‐hydrophilic linear polyurethanes previously described. The thermal properties of the novel polymers were investigated by thermogravimetric analysis and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Polyelectrolyte complexes containing diazonium groups (PEC-N2) with a high ionic crosslinking rate were prepared as a precipitate by mixing the diazo-resin with polyanion solutions. The photochemical decomposition of the complexes from different polyanions was studied. It was shown that PEC-N2 exhibit high photosensitive properties. Under irradiation of UV light, the complexes which can be dissolved in ternary mixtures such as H2O-DMF-LiCl,H2O-DMF-NaSCN or H2O-DMF-ZnCl2 (DMF: N,N-dimethylformamide) become indissoluble since the crosslinking structure of the complexes changes from ionic to covalent.  相似文献   

20.
Phenylphosphonyl-N,N′-biscaprolactam (I) and phenylphosphonyl-N,N′-bis(3,5-dimethylpyrazole) (II) were synthesized and found to be very efficient activators for the anionic polymerization of caprolactam when used in combination with strong bases such as sodium caprolactam. Polymers obtained in the presence of I and II had generally higher molecular weights and were less sensitive to thermal degradation upon molding than those whose preparation entailed the use of N-acetyl-caprolactam (III) as an activator. Thermal behavior and tensile properties indicated that the structure of these polyamides differs from that encountered in nylon 6 prepared with conventional anionic catalyst systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号