首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear polyurethane, linear segmented polyurethane, polyurethane networks, and polyurethane acrylate networks of various composition were synthesized. The variation of Tg with the type of macrodiol, its length, and the chemical composition of the polymer were studied in relation with the percentage of soft segments, the molar mass between crosslinks, and the concentration of urethane bonds. In this work, the networks were considered as composed of chain segments of various composition between point-like crosslinks. The chemical heterogeneities of the networks were not taken into account. For polyurethanes, it was shown that Tg values are essentially controlled by the amount of urethane bonds. For polyurethane acrylates, the Tg values are dependent on the amount of urethane bonds but also on the presence of crosslinks whose number is varying with the excess of diisocyanate of the first step three times faster for PUA compared with PU. No clear relation was observed between Tg and the molar mass between point-like crosslinks. Another approach considering the network heterogeneities is indispensable and will be used in a following work. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
We study the water swelling behavior of semiaromatic crosslinked polyamide (PA) ultrathin films to characterize the network properties of the polymer. Specifically, we use X-ray reflectivity to measure film thickness increase and polymer density decrease of the PA films due to swelling. With the aid of a modified Flory–Rehner theory used to describe the constrained swelling behavior of polymer networks, we are able to extract the Flory interaction parameter and the monomer units between crosslinks by performing the swelling experiments at different levels of hydration. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

3.
4.
By using the model of a randomly coiled chain, a relation is derived describing the equilibrium stress–strain behavior of variously ionized polyelectrolyte gels swollen in solutions of a uni–univalent salt. The effect of the concentration of bound counterions calculated on the basis of the cylindrical model and the effect of the change of length of the statistical chain segment with the change in ionization of the gel on stress–strain, swelling, and potentiometric equilibria is discussed.  相似文献   

5.
Crosslinked polymers (CLPs) exhibit exceptional mechanical properties as well as good chemical and solvent resistance. However, their reprocessing, recycling, and modification remain difficult. One promising approach to overcome this limitation is to introduce dynamic covalent bonds that enable chain‐exchange reactions and network‐structure rearrangements in identical polymer networks (A–A fusion), resulting in self‐healing and reprocessing properties. Reported here is the fusion of two distinct polymer networks (A–B fusion) by the dynamic behavior of bis(2,2,6,6‐tetramethylpiperidin‐1‐yl)disulfide (BiTEMPS) at the interface between different CLPs. The appearance, swelling behavior, and mechanical properties of the fused samples indicate exchange reactions of the BiTEMPS units and the formation of topological bonds at the interface, commensurate with the generation of a CLP that exhibits tunable properties.  相似文献   

6.
7.
Mooney's version of the molecular theory of polymer networks has been generalized to the case when the external strain applied in the isotropic state is different from that at network formation. As in the theory of equilibrium behavior of the polymer networks, this generalization allows inclusion in the viscoelastic functions of effects connected with the temperature dependence of internal energy of the chains and with the strain effect of the solvent. From viscoelastic functions thus generalized, it is possible to derive a relation for calculation of the monomeric friction coefficient. It also suggests the possibility of superposing data obtained at various temperatures, degrees of swelling, and condition of network formation.  相似文献   

8.
The theory of elasticity of polymer networks has been developed along two lines. The phenomenological approach leads to the Mooney-Rivlin relation between stress and extension ratio for uniaxial extension. The statistical theory of elasticity, based on a model for polymer molecules, predicts a similar relation with one of the constants zero. Actual elastic properties of rubbers do not agree fully with either theory.

Experimental results are reported obtained with quantitatively cured polybutadiene and polyisoprene vulcanizates. These data are near-equilibrium results through the use of a cyclic stress sequence which largely eliminates the influence of long-time creep. The dependence of the initial modulus and the parameters of the Mooney-Rivlin relation on the chemical nature and the degree of branching of the polymer, the type of cross-links, and temperature has been investigated. A possible relation between the energy component of the elastic force and one of the parameters is discussed.

These results as well as those in the literature refer to irreversible processes. It is proposed that this irreversibility results from friction accompanying slippage of chain entanglements. This mechanism is compatible with the observed dependences. It is concluded that the variation of elastic properties with elongation is due to changes in network topography.

Some observations are made on the topological changes of vulcanizate networks at very high elongations. Similarities are pointed out between reinforcement by stress crystallization and by addition of carbon black. The effect of blacks is attributed mainly to preferential adsorption on the carbon particles of short network chains which become overstressed at high deformation. On adsorption the kinetic energy of these particular chains will be dissipated in the form of heat of adsorption.

Examples are given of the applicability of F. Bueche's relation between extension of the sample and that of the elastomer matrix in a filled vulcanizate. This equation differs from that based on Einstein's relation for the viscosity of suspensions, which has been shown to be applicable in other filled rubbers. The difference between the two relations may be associated with the absence or presence of chemical bonding of elastomer to filler.

Network topography has an influence on the ultimate properties of vulcanizates. Polybutadiene samples in which the cross-links are single bonds break at lower elongation than those with equal concentrations of cross-links consisting of 18-atom chains.  相似文献   

9.
Hybrid polymer networks emerge between chemical and physical crosslinking, where two different modes of chain connectivity control the material behavior. However, rational relations between their microstructural characteristics, supramolecular kinetics, and the resulting network mechanics and dynamics are not well developed. To address this shortcoming, this study introduces a material platform based on a model dual-network hydrogel, comprising independently tunable chemical and physical crosslinks. The idea is realized by a click reaction between a tetra-PEG and a linear-PEG precursor, whereby the linear block also carries a terpyridine ligand at each end that can form additional physical crosslinks by metal ion–bis(terpyridine) complexation. We change the number of chemical crosslinks by varying the molar mass of the tetra-PEG, and we independently tune the metallo-supramolecular bonds by using different metal ions, Mn2+, Zn2+, Co2+, and Ni2+. Based on that modular approach, we study the rheological behavior and the diffusivity of fluorescent polymeric tracers. The dissociation of the metallo-supramolecular bonds provides a relaxation step, whose timescale and intensity are quantified by a sticky Rouse model. These two characteristics differ not only depending on the metal ion but also according to the chemical network mesh size, which highlights an interplay between the chemical and physical crosslinks. © 2020 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 330–342  相似文献   

10.
The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only vinyl functionalities (poly[phenylmethylvinyl]siloxanes) were crosslinked by using crosslinking agents with reactive silicon–hydrogen groups. In prepolymers having both silicon–vinyl and silicon–hydrogen groups (poly[phenylmethylvinylhydro)]siloxanes crosslinking took place intermolecularly. The thermal and mechanical properties of the polymer networks were found to be dependent on the phenyl  Si O3/2 (branches) content in the prepolymer, the number of elastically effective crosslinks, the elastically effective network chain density and molecular weight between crosslinks, length of the chain segments introduced by the hydrosilylation crosslinking reaction, and the number of dangling ends. As a consequence of the dense crosslinking, the mechanical properties were also strongly dependent on the glass transition temperature. A tough–brittle transition was observed around the glass transition temperature of the polymer networks. The properties of the poly(phenylmethylvinylhydro)siloxane networks were found to be superior to those of the poly(phenylmethylvinyl)siloxane networks. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1311–1331, 1997  相似文献   

11.
PVC was crosslinked by immersing PVC–dithiol blends in ethylenediamine at 30°C. Properties of the products depended on the chain length and chemical structure of the crosslinkage and on the molecular weight of the polymer chain between crosslinks Mc. Crosslinking by the agent of soft structure and long molecular chain resulted in high tensile strength at break and impact strength and low brittle temperature. The use of the crosslinking agent of short molecular chain gave high yield strength, Young's modulus, and heat distortion temperature. The relation of Mc and the chemical structure of the crosslinks to the properties of the crosslinked rigid polymer was discussed in regard to the crosslinking effect and plasticizing effect.  相似文献   

12.
The swelling equilibrium and diffusion kinetics in various solvents of the maleimide-terminated polyurethanes (UBMIs) and of the triol and tetraol-crosslinked polyurethanes (PU) were studied. The polymer volume fraction of the UBMIs at swelling equilibrium is much higher than that of the tetraol-crosslinked PU networks for the same type of polyol used in the PU. It was explained by the high functionality of the UBMIs produced in the network structure. Furthermore, the molecular weight between crosslinks (Mc) has been calculated from the swelling model and the results exhibit good agreement with the proposed network structure. The early time sorption kinetic data were obtained to investigate the diffusion mechanism of the solvent in the networks. The solubility, diffusion coefficients, and permeability of the solvent in UBMI networks were found to be lower than in the multiol-crosslinked PU networks. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1747–1755, 1997  相似文献   

13.
The effects of the reactivity of a crosslinking agent on the microphase‐separated structure of sequential interpenetrating polymer networks are analyzed with a Monte Carlo simulation technique. The simulation results showed that the maximum structure factor decreases with an increasing crosslinking rate. However, the maximum structure factor increases when the crosslinking rate is increased further. This behavior is explained by a competition between the phase separation and the restriction of chain mobility due to the increase in molecular weight. In addition, there exists a chain length where the chain motion is the most restricted when crosslinks are formed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1005–1012, 2000  相似文献   

14.
A new method for determining the extent of reaction of thermoset elastomers was developed based on equilibrium swelling and dynamic mechanical analysis (DMA). The extent of reaction was defined based on the molecular weight between crosslinks (Mc) of a polymer sample in relation to Mc at the onset of gelation and at complete reaction. The molecular weight between crosslinks was measured using equilibrium swelling, whereas rheology and DMA were used to determine the exact point of gelation and reaction completion, respectively. The extent of reaction of poly(1,8‐octanediol‐co‐citrate) at various polymerization conditions was investigated and this method was used to study the relationship between mechanical properties, molecular weight between crosslinks, and extent of reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1318–1328, 2008  相似文献   

15.
Crosslinking of polyethylene influences its swelling properties. It could be expected that pre-crosslinking of polyethylene influences the rate and yield of grafting as well. This is demonstrated by pre-crosslinking of polyethylene and by its subsequent grafting with styrene after the trapped radicals had been annealed out.In order to obtain more direct information about the influence of swelling agent on polyethylene crosslinking, the elastic modulus of the crosslinked polyethylene was investigated. Stress–strain curves of polyethylene samples irradiated in different environments were recorded in molten state at 165 °C. The results show that irradiation of swollen polyethylene produces fewer effective crosslinks than does irradiation of dry polymer.  相似文献   

16.
Several partially interpenetrating polymeric networks (IPN) were made by combining chemically different linear elastomers. The polymer combinations were deposited as films from aqueous emulsions made by mixing the individual emulsions in equal proportions. The films were crosslinked to form two superimposed networks. In two cases, the networks were cleanly separated by hydrolysis of one of the component networks to demonstrate that there was no chemical interaction between the polymers. Measurement of crosslink density showed that, in most cases, partial interpenetration does occur as evidenced by an effective crosslink density of the IPN's greater than the arithmetic mean of the crosslink densities of the component networks. The swelling ratios, densities, and stress–strain properties were determined. For one of the network combinations, a poly(urethane–urea) and a poly(butadiene–acrylonitrile), a series of IPN's varying in polymer composition was made. The swelling ratios and densities are close to the arithmetic means; however, both the tensile strength and crosslink density exhibit a maximum at about 70% poly(butadiene-acrylonitrile). The maximum tensile strength is actually significantly higher than that of either of the component polymers. The elongations all approach that of the poly(urethane–urea), the more extensible material, except for compositions approaching 100% poly(butadiene–acrylonitrile), which exhibit a very low extensibility.  相似文献   

17.
The network parameters of swollen, solution-crosslinked polymer filaments can be collected from deswelling measurements in solutions of nonpermeating polymer or, as shown in this paper, from the stress–strain relation when in equilibrium with the surrounding solvent. The degree of swelling, at which the partial molar free energy of elasticity equals zero, is found to vary with solvent power in agreement with earlier findings on other systems. Comparison with results of studies on rubber networks crosslinked in the absence of diluent show that previously observed discrepancies between theory and experiment can be attributed to the deficiency of the single term involving the one-third power of the volume fraction of polymer in the swollen network to describe the contribution of the partial elastic free energy.  相似文献   

18.
本文根据Flory的溶胀理论和橡胶弹性理论,考察了顺-1 4-聚丁二烯辐射交联产物的化学网络和物理缠结网络结构特性及其对固体力学性能的影响。结果表明,交联产物的物理缠结网络密度远远大于化学交联网络密度。随着辐照剂量的增大,化学交联密度增高,物理缠结数下降。探讨了交联、缠结密度与Mooney-Rivlin方程的常数项C_1和C_2的关系。C_1来自化学交联网络的贡献;C_2来自物理缠结的贡献。物理缠结网络主要贡献于交联物体在小形变下的起始弹性模量G_0;化学交联网络则主要贡献于交联物体在大形变下的非线性弹性,即断裂强度(?)_B。  相似文献   

19.
Stimuli‐responsive bioconjugated hydrogels that can respond to a target antigen (antigen‐responsive hydrogels) were prepared by introducing antigen‐antibody bindings as reversible crosslinks into the gel networks. The preparation conditions of the antigen‐responsive hydrogels and the mechanism of the antigen‐responsive behavior were investigated, focusing on bioconjugated hydrogel structures. This article also focuses on the effect of semi‐interpenetrating polymer network (semi‐IPN) structures on the antigen‐responsive swelling/shrinking behavior of bioconjugated hydrogels with antigen‐antibody bindings. The preparation conditions and the network structures of the bioconjugated hydrogels are discussed in relation to designing antigen‐responsive hydrogels. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2144–2157, 2009  相似文献   

20.
We report the swelling behavior of chemically crosslinked polyvinyl alcohol (PVA) gels with different degrees of hydrolysis in water, several organic solvents, and their mixed solvents. The gels were dried after gelation and were put into their respective solvents. The gel volume in pure water decreased with increasing temperatures, and the total changes increased with decreasing degrees of hydrolysis. The swelling ratio depends on the solvent and its concentration. In the cases of mixed solvents of methanol–water, ethanol–water, and acetone–water, the gels shrank continuously with increasing concentrations of solvents and reached the collapsed state in the pure organic solvent. In the case of dimethyl sulfoxide (DMSO), on the other hand, the gels shrunk, swelled, and finally reached the swollen state in pure DMSO. Results of measurements using Fourier Transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) suggested that crosslinks and microcrystallites were formed due to hydrogen bonds during the drying process after gelation. The hydrogen bonds were partly destroyed in a rich solvent, but the residual hydrogen bonds had an essential role in determining the swelling behavior in a poor solvent. The swelling behavior and the possible phase transition of the present system are discussed in terms of the solubility of polymers with different degrees of hydrolysis in given mixed solvents and in terms of the formation and destruction of physical crosslinks in the chemical PVA gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1978–1986, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号