首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Abstract

A facile procedure is presented for the synthesis of (E)-1-(3′-hydroxy-2′-furanyl)-3-(3″-hydroxy-4″-methoxyphenyl)-2- propen-1-one (6). Galactosylisomaltol (1) was condensed with isovanillin (2) under strong alkaline conditions at 25 [ddot]C to form (E)-1-(3′-O-β-D-galactopyranosyloxy-2′-furanyl)-3-(3″- hydroxy-4″-methoxyphenyl)-2-propen-1-one (4). (E)-1-(3′-hydroxy-2′-furanyl)-3-(3″-hydroxy-4″-methoxyphenyl)-2-propen-1-one (6) was obtained by acid hydrolysis of 4 in a 53.9% yield. This hetero-cyclic 2-propen-1-one was characterized on the basis of spectral data (IR and 1H NMR), physicochemical properties, and conversion to a mono-O-acetyl derivative.  相似文献   

2.
A new coruleoellagic acid derivative, 3,3′,4,4′,5′-pentamethylcoruleoellagic acid (1) together with nine known compounds, hexamethylcoruleoellagic acid (2), 3,4,3′-tri-O-methylellagic acid (3), heptaphylline (4), 7-methoxymukonal (5), dentatin (6), sinapaldehyde (7), gallic acid (8), 2,6-dimethoxy-4H-pyran-4-one (9) and β-sitosterol (10) were isolated from the stems of Rhodamnia dumetorum. Their structures were identified by physical and spectroscopic data (IR, 1D and 2D NMR, and MS). Compounds 1, 2 and 7-10 were tested for antibacterial activity against six pathogenic bacterial strains (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Methicillin resistant S. aureus (MRSA)).  相似文献   

3.
ABSTRACT

3,4-Di-O-acetyl-2-deoxy-2-nitroso-α-D-xylo-pentopyranosyl chloride (2) reacts with pyrazole to afford 1-[3,4-di-O-acetyl-2-deoxy-2-(Z)-hydroxyimino-α- (3) and β-D-threo-pentopyranosyl]pyrazole (4). The products of condensation were modified at C-2 or C-3 to give pyrazole derivatives with 3-azido-2,3-dideoxy-2-hydroxyimino-pentopyranosyl (5,7,8,9,10), 2-acetoxyimino-2,3-dideoxy-β-D-glycero-pentopyranosyl (12,13), β-D-lyxo- (14), β-D-xylopentopyranosyl (15) structures and 2,3-dihydro-2-pyrazol-1-yl-6H-pyran-3-one oximes (6,11). The conformation of the sugar residue and configuration at the anomeric centre and of the hydroxyimino group were established on the basis of 1H NMR and polarimetric data.  相似文献   

4.
Phytochemical investigation of methanol extract of the rhizomes of Alpinia officinarum Hance afforded four known diarylheptanoids 1,7-diphenylhept-4-en-3-one (1), 5-hydroxy-1,7-diphenyl-3-heptanone (2), 5-hydroxy-7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-3-heptanone (3), and 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl heptan-3-one (4).The acetate derivative of (4), 7-(4″-actetate-3″-methoxy phenyl)-1-phenyl heptan-3-one (5), was prepared. These diarylheptanoids exhibited promising in vitro and ex vivo antitubercular activity for the first time against dormant Mycobacterium tuberculosis H37Ra with the IC50 values between 0.3447.69 and 0.13–22.91 μM, respectively. All compounds showed comparable activity against Mycobacterium bovis BCG (dormant phage) and did not show any activity against two gram + ve and two gram –ve bacterial strains. These compounds were also weakly cytotoxic up to 300 μM against three human cancer cell lines THP-1, Panc-1 and A549.  相似文献   

5.
Several 3-alkoxysubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides structurally related to adenosine, inosine and guanosine have been prepared by the direct glycosylation of preformed aglycon precursor containing a 3-alkoxy substituent. Ring closure of 5(3)-amino-3(5)-ethoxypyrazole-4-carboxamide ( 6b ) with either formamide or potassium ethyl xanthate gave 3-ethoxyallopurinol ( 7b ) and 3-ethoxy-6-thioxopyrazolo[3,4-d]-pyrimidin-4(5H,7H)-one ( 10 ), respectively. Methylation of 10 gave the corresponding 6-methylthio derivative 15 . Similar ring annulation of 5(3)-methoxypyrazole-4-carboxamide ( 6a ) with formamide afforded 3-methoxyallopurinol ( 7a ). Treatment of 5(3)-amino-3(5)-methoxypyrazole-4-carbonitrile ( 5a ) with formamidine acetate furnished 4-amino-3-methoxypyrazolo[3,4-d]pyrimidine ( 4 ). High-temperature glycosylation of 7b with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of boron trifluoride etherate gave a 2:1 mixture of N-1 and N-2 glycosyl blocked nucleosides 11b and 13b . Deprotection of 11b and 13b with sodium methoxide gave 3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 12b ) and the corresponding N-2 glycosyl isomer 14b , respectively. Similar glycosylation of either 4 or 7a , and subsequent debenzoylation gave exclusively 4-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine ( 9 ) and 3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-(5H)-one ( 12a ), respectively. The structural assignment of 12a was made on the basis of single-crystal X-ray analysis. Application of this general glycosylation procedure to 15 gave the corresponding N-1 glycosyl derivative 16 as the sole product, which on debenzoylation afforded 3-ethoxy-6-(methylthio)-1-(3-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ). Oxidation of 16 and subsequent ammonolysis furnished the guanosine analog 6-arnino-3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]-pyrimidin-4(5H)-one ( 19 ). Similarly, starting from 3-methoxy-4,6-bis(methylthio)pyrazolo[3,4-d]pyrimidine ( 20 ), 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 23 ) was prepared.  相似文献   

6.
Nucleosides of pyrrolo[2,3-d]pyridazin-4(5H)-ones were prepared by the single-phase sodium salt glycosylation of appropriately functionalized pyrrole precursors. The glycosylation of the sodium salt of ethyl 4,5-dichloro-2-formyl-1H-pyrrole-3-carboxylate ( 4 ), or its azomethino derivative 7 , with 1-bromo-2,3,5-tri-O-benzoyl-D-ribofuranose in acetonitrile afforded the corresponding substituted pyrrole nucleosides ethyl 4,5-dichloro-2-formyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 5 ) and ethyl 4,5-dichloro-2-phenylazomethino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1H-pyrrole-3-carboxylate ( 8 ), respectively. The latter, upon treatment with hydrazine, afforded the annulated product 2,3-dichloro-1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 6 ), in good yield. The unsubstituted analog 1-β-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyridazin-4(5H)-one ( 9 ), was obtained upon catalytic dehalogenation of 6 . This report represents the first example of the synthesis of nucleosides of pyrrolopyridazines.  相似文献   

7.
The new ecdysteroid derivative 20-hydroxyecdysone O-(2-chloropyridin-5-ylmethyl)oxime (3) was synthesized via the reaction of 20-hydroxyecdysone (1) and O-(2-chloropyridin-5-ylmethyl)hydroxylamine (2) in Py in the presence of SnCl4.  相似文献   

8.
A one-pot procedure has been developed for the synthesis of substituted 2,3-dihydro-2-(6-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-7H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazin-3-yl)phthalazine-1,4-diones by reaction of 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one, 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol, and phthalic anhydrides in acetic acid medium. Similarly, a one-pot, three-component synthetic procedure has been developed for substituted 3-[3-(N1-benzylidene-hydrazino)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl]-4-hydroxy-6-methyl-pyran-2-ones from 3-(2-bromoacetyl)-4-hydroxy-6-methyl-2H-pyran-2-one, 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol, and various aromatic aldehydes in absolute ethanol and a few drops of glacial acetic acid.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   


9.
Boiling of ethyl cyanoacetate with 6-tert-butyl-3-hydrazino-1'2'4-triazin-5(2H)-one in alkalinemedium yielded 6-tert-butyl-3-(5-hydroxy-3-oxo-2'3-dihydro-1H-pyrazol-1-yl)-1'2'4-triazin-5(2H)-one.Acylation of 6-tert-butyl-3-hydrazino-1'2'4-triazin-5(2H)-one with benzoyl chloride furnished 3-benzoyl-hydrazido-1'2'4-triazine that cyclized when treated with POCl3 providing a derivative of[1'2'4]triazolo[4'3-b][1'2'4]triazine. Boiling of 6-tert-butyl-3-hydrazino-1'2'4-triazin-5(2H)-one in glacialacetic acid gave rise to diacetylated derivative whereas the boiling with acetic anhydride in an inert solventafforded monoacetylated product.  相似文献   

10.
Abstract

Suitably protected 1-deoxynojirimycin (l, 5-dideoxy-l, 5-imino-D-glucitol; DNJ) and its 2-acetamido derivative, i.e., 2, 3, 6-tri-O-benzyl-.N-benzyloxycarbonyl-l, 5-dideoxy-1, 5-imino-D-glucitol (6) and 2-acetamido-3, 6-di-O-benzyl-N-benzyloxycarbonyl-1, 2, 5-trideoxy-l, 5-imino-D-glucitol (14) were each coupled with methyl 2, 3, 4, 6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (15) in the presence of dimethyl(methylthio)-sulfonium triflate (DMTST) as a promoter, to give 16 and 18, which were converted to the novel disaccharides (20, 21) related to lactose and lactosamine. Coupling of 14with methyl 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-l-thio-β-D-glucopyranoside (22) gave achitobiose analog (25). O-(β-D-Galactopyranosyl)-(l→3)-DNJ derivatives (38, 39) and O-(β-D-glucopyranosyl)-(l→3)-DNJ (45) were also synthesized. Conformational analysis of a variety of DNJ derivatives, based on the 1H NMR data, is also discussed.  相似文献   

11.
6-Methoxy-2-methylpyridazin-3(2H)-one ( 1 ) gave with 2-diazopropane ( 8 ) a mixture of 3H-pyrazolo[3,4-d]-pyridazin-4(5H)-one derivative 12 , as the main product, and -7(6H)-one derivative 10 , as the minor product. On the other hand, 4-substituted pyridazin-3(2H)-ones 2, 3 , and 4 gave 3H-pyrazolo[3,4-d]pyridazin-7(6H)-one 10 , exclusively, while 5-substituted pyridazin-3(2H)-ones 5, 6 , and 7 produced only the isomeric 3H-pyrazolo[3,4-H]pyridazin-4(5H)-one 12 . The 5-phenylsulfonyl derivative 13 gave with 8 by elimination of a molecule of nitrogen, followed by rearrangement, 1,2-diazepine derivative 15 and with an excess of 8 3H-pyrazolo[3,4-d][1,2]diazepine derivative 16. 1 ,2-Dimethylpyridazine-3,6-(1H,2H)-dione and its derivatives 18 and 19 produced 3H-pyrazolo[3,4-d]pyridazine-4,7(5H,6H)-dione derivative 23 , while from 17 and 1-diazoindane ( 24 ) the spiro compound 27 was obtained. The 1,2-dihydro and 3a,7a-dihydro intermediates 21 and 25 were isolated.  相似文献   

12.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

13.
Abstract

A stereocontrolled synthesis of α-series ganglioside GM1α (III6Neu5AcGgOse4Cer) is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (1) with the suitably protected galactosamine donor, methyl 3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-galactopyranoside (4) gave the desired trisaccharide, which was transformed into the trisaccharide acceptor via removal of the phthaloyl and O-acetyl groups followed by N-acetylation. Glycosylation of this acceptor with methyl 3-O-benzyl-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) gave the asialo GM1 saccharide derivative, which was transformed into the acceptor by removal of benzylidene group. Coupling of this gangliotetraose acceptor with phenyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d-glcero-d-galacto-2-nonulopyranosyl)onate by use of NIS-TfOH afforded the desired GM1α oligosaccharide derivative in high yield, which was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor. Condensation of this imidate derivative with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) gave the β-glycoside, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound GM1α.  相似文献   

14.
2-(1-Isopropylidene)azino-3-β-D-ribofuranosyl-5- methoxycarbonylmethylenethiazolidin-4-one (IV) and 2-(1-methylbenzilidene)azino-3-β-D-ribofuranosyl-5-carboxymethylenethiazolidin-4-one were prepared by independent synthesis utilizing either acid catalyzed fusion of 2-(1-isopropylidene)azino-5-methoxycarbonylmethylenethiazolidin-3(H)-4-one (II) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose, silylation procedure with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide or by cyclization of new isopropylidene and/or methylbenzilidene derivatives (VII) of 4-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)thiosemicarbazide (VI) with maleic anhydride and subsequent methylation. The synthetic approach has unambigously established the glycosilation site as well as anomeric configuration, which was additionally derived from pmr spectral data.  相似文献   

15.
Bromination of 3-methyl-1-phenyl-Δ2-1,2,3-lriazolin-5-one (II) and its 4-phenyl derivative III afforded the corresponding I-(p-Bromophenyl) derivatives IV and V, respectively. (Chlorination of the 4-phenyl derivative III gave I-(P-chlorophenyl) derivative VI. In addition, 3-N-subsuituted-carhamoyl-1,2,4-triazolin-5-ones(XII, XIII, and XIV) were synthesized by the Schotten-Baumann reaction of 3-carboxy-1-phenyl-Δ2-1,2,4-triazolin-5-one (XI) with various amines.  相似文献   

16.
The transformation of D-glucose to 5,6-disubstituted 5,6-dihydro-2H-pyran-2-one 3, an analogue of the (5R)-C6-pyranoid part of the natural α,β-unsaturated-δ-lactones is described.  相似文献   

17.
Treatment of tetrahydro-2H-1,3-oxazin-2-one (1) or the 3-methyl derivative 2 with aniline salts or thiophenols at 180 °C affords the corresponding N-aryl-1,3-propanediamines 3 or 3-(arylthio)propanamines 4 in good yields.  相似文献   

18.
Acylation of 4-alkoxycarbonyl-3-amino-6-hydroxy-2H-1-benzopyran-2-one derivatives 3 and 4 gave under mild conditions the O-substituted derivatives 5–10, N,O -disubstituted derivative 11 and N,N-disubstituted derivative 12 . The compound 4 was transformed with benzoyl chloride under more drastic conditions into 13 , a derivative of a new heterocyclic system 2-benzopyrano[3,4-d][1,3]oxazine. The derivatives of 1-benzopyrano-[3,4-d]pyrimidine 19 and 20 were prepared either from 3 and 4 through the corresponding N-heteroarylformamidines 14 and 15 and N-heteroarylformamide oximes 17 and 18 or by cyclization of thiourea derivative 20 .  相似文献   

19.
6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 4 ), an isostere of the nucleoside antibiotic oxanosine has been synthesized from ethyl 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxylate ( 6 ). Treatment of 6 with ethoxycarbonyl isothiocyanate in acetone gave the 5-thioureido derivative 7 , which on methylation with methyl iodide afforded ethyl 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-ethoxycarbonyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxylate ( 8 ). Ring closure of 8 under alkaline media furnished 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]-1,3-oxazin-4-one ( 10 ), which on deisopropylidenation afforded 4 in good yield. 6-Amino-1-(β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 5 ) has also been synthesized from the AICA riboside congener 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carboxamide ( 12 ). Treatment of 12 with benzoyl isothiocyanate, and subsequent methylation of the reaction product with methyl iodide gave 1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-5-[(N'-benzoyl-S-methylisothiocarbamoyl)amino]pyrazole-4-carboxamide ( 15 ). Base mediated cyclization of 15 gave 6-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 14 ). Deisopropylidenation of 14 with aqueous trifluoroacetic acid afforded 5 in good yield. Compound 4 was devoid of any significant antiviral or antitumor activity in culture.  相似文献   

20.
ABSTRACT

A series of sialyl-α-(2→3)-neolactotetraose derivatives containing N-acetyl-(NeuAc), N-glycolyl- (NeuGc) and N-butanoylneuraminic acid, and 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) have systematically been synthesized as molecular probes for elucidation of substrate specificity of human α1,3-fucosyltransferases (Fuc-TVII and Fuc-TVI). 2-Methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-glucopyrano)-[2',1':4,5]-2-oxazoline (1) was coupled with 2-(trimethylsilyl)ethyl (2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1 → 4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2) to give a trisaccharide 3 which, upon successive O-deacetylation, benzylidenation and reductive opening of the benzylidene group, afforded a common glycosyl acceptor 5. Glycosylation of 5 with sialyl-α-(2→3)-galactose donors 6-8, 19 and 21 gave the corresponding pentasaccharides 22-25, which were converted to a series of sialyl-α-(2→3)-neolactotetraose derivatives 30-33. In the competitive enzyme assay, the NeuGc derivative 32 showed the most potent activity for Fuc-TVII, while the KDN derivative 31 was less active than the standard NeuAc derivative 30. In contrast, the N-butanoylation of neuraminic acid enhanced the activity for Fuc-TVI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号