首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methacryloyl-L -valine methyl ester (MAVM) and maleic anhydride (MAn) were photopolymerized without initiator in dioxane at 35°C. Copolymer having a 1:1 molar ratio of the monomers was obtained regardless of both molar ratio of monomers in the feed and polymerization time. The circular dichroism (CD) spectrum of the copolymer before and after hydrolysis showed the induction of asymmetric centers into the polymer main chain. Spectroscopic and kinetic studies suggested the alternating and stereoregular copolymerization of MAVM and MAn, in which a charge transfer complex with a 1:1 molar ratio of monomers participated.  相似文献   

2.
The stereochemical composition of an alternating methacryloyl-L -valine methyl estermaleic anhydride (L-MAVM/MAn) copolymer which was prepared by the photocopolymerization of L-MAVM and MAn in dioxane at 25°C without initiator was investigated by proton magnetic resonance spectroscopy. The resonance of the ester methyl protons of the L-MAVM unit appeared as three split peaks at 3.65, 3.76, and 3.82 ppm, which could be assigned to those of the coisotactic (di-threo-tri-isotactic), coheterotactic and cosyndiotactic triads, respectively. The triad cotacticity determined according to these assignments indicated that the copolymer was composed predominantly of di-threo-tri-isotactic triad. Similarly PMR spectroscopic investigation of the acryloyl-L -valine methyl ester–maleic anhydride (L-AVM/MAn) copolymer with a 1:1 molar ratio of the monomers showed that the main tactic fraction of the copolymer was also di-threo-tri-isotactic one. Nevertheless, the circular dichroic investigation of the L-AVM/MAn copolymer before and after hydrolysis denied asymmetric induction into the polymer main chain. These results suggest that the propagation step in the photocopolymerization of L-MAVM or L-AVM with MAn proceeds by the trans-trans opening of the complexmer composed of a 1:1 molar ratio of L-MAVM or L-AVM and MAn.  相似文献   

3.
The 1:1 or 2:1 complex of acrylonitrile, methacrylonitrile, or methyl methacrylate with ZnCl2 was copolymerized with styrene at the temperature of 0–30°C without any initiator. The structure of the copolymer from methyl methacrylate complex and styrene was examined by NMR spectroscopy. The complexes of acrylonitrile or methacrylonitrile with ZnCl2 gave a copolymer containing about 50 mole-% styrene units. The complexes of methyl methacrylate yielded an alternating copolymer when the feed molar ratio of methyl methacrylate to styrene was small, but with increasing feed molar ratio the resulting copolymer consisted of about 2 moles of methyl methacrylate per mole of styrene. The formation of a charge-transfer complex of styrene with a monomer coordinated to zinc atom was inferred from the ultraviolet spectra. The regulation of the copolymerization was considered to be effected by the charge-transfer complex. The copolymer resulting from the 2:1 methyl methacrylate–zinc chloride complex had no specific tacticity, whereas the copolymer from the 1:1 complex was richer in coisotacticity than in cosyndiotacticity. The change of the composition of the copolymer and its specific tacticity in the polymerization of the methyl methacrylate complex is related to the structure of the complex.  相似文献   

4.
A novel dispersion copolymerization of maleic anhydride (MAn) and vinyl acetate (VAc) without adding stabilizer is developed, which gives uniform copolymer microspheres with tunable sizes. Some principal factors affecting the microspheres, such as reaction time, monomer concentration and feed ratio, reaction media, and cosolvent, were investigated. It was found that the stabilizer‐free dispersion copolymerization of MAn and VAc is a rapid process, and the particle size grows in accordance with the evolution of polymerization. The chemical composition of the copolymer microspheres was characterized by FT‐IR and 13C NMR spectroscopies. Over a wide range of monomer concentrations, the microspheres can always be formed and stably dispersed, with uniform sizes ranging from 180 nm to 740 nm. The yield of copolymer microspheres reaches a maximum at 1:1 feed ratio of MAn to VAc, owing to the alternating copolymerization between the binary monomers by a known charge‐transfer‐complex mechanism. However, the diameter of microspheres drastically increases when MAn content is enhanced. Only some specific alkyl ester solvents, such as n‐butyl acetate, isobutyl acetate, n‐amyl acetate, are desirably fit for this unique stabilizer‐free dispersion polymerization. Furthermore, we found that when some acetone is added as a cosolvent, the copolymer microspheres can still be formed, with much larger diameters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3760–3770, 2005  相似文献   

5.
Methyl methacrylate (MMA) and styrene (St) copolymerize in the presence of zinc chloride at 3°C under photoirradiation. The contents of methyl methacrylate in the copolymers obtained at a [ZnCl2]/[MMA] molar ratio of 0.4 are systematically larger than 53 mole %, which is the limiting value at a small feed ratio of methyl methacrylate. The resulting copolymers are confirmed as the sole products and not the mixtures by thin layer chromatography. The effect of dilution of the monomer feed mixture with toluene on copolymer composition suggests that it depends chiefly on the feed concentration of styrene and hardly at all on monomer feed ratios. Copolymerizations are also conducted in the presence of stannic chloride at ?17°C under photoirradiation and in the presence of ethylaluminium sesquichloride at 0°C with spontaneous initiation. The contents of methyl methacrylate in both copolymers obtained at feed ratios lower than 60 mole % almost correspond to the 1:1 alternating copolymer and increase systematically with higher feed ratios. The systematic deviations of copolymer composition obtained in the presence of metal halides are reasonably interpreted by the participation of the binary molecular complex composed of metal halide and methyl methacrylate in the polymerization of the ternary molecular complex composed of metal halide, methyl methacrylate, and styrene.  相似文献   

6.
The spherical polymer nanoparticles of biobased renewable monomers, furfuryl alcohol (FA) and maleic anhydride (MAn), with diameters (Dn) in the range of 120 to 500 nm have been prepared by stabilizer‐free dispersion copolymerization. In acetate or its mixture, the conversion of the monomers greatly depended on the concentration of AIBN. When the molar ratio of AIBN/monomers was 3.6% (wt), the monomer conversion could be as high as 80%. The aggregations of the solvated polymer chains formed the nuclei of the polymer particles. After the nucleation stage, both the monomer conversions and particle sizes increased steadily, while the coefficient of variation of the particle size decreased. The almost linear relationship between the Dn3 and the weight of polymer suggested that there is no significant secondary nucleation. The copolymer of FA and MAn could not dissolve in common organic solvents. Elemental analyses, FTIR and 13CP‐MAS spectra showed that the copolymer was close to the alternative copolymer of FA and MAn irrespective to the molar ratios of FA/MAn in monomer feed. Furthermore, the two 2,5‐ and 3,4‐dihydrofuran ring configurations exist in the copolymer and the later is the major one. The reaction of copolymer particles with triethylenetetramine confirmed the reactivity of the succinic anhydride groups at the surface of copolymer particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Summary: A novel, stabilizer‐free dispersion polymerization with alkyl esters as reaction media gives uniform alternating microspheres of maleic anhydride (MAn)/vinyl acetate (VAc) copolymer. The diameter of the copolymer microspheres could be precisely controlled from 80 to 750 nm by changing the monomer concentration or feed ratio. Moreover, this new type of copolymer microspheres with reactive anhydride groups on the surface has good solubility in common nontoxic solvents such as water and ethanol.

SEM image of the powder surface of copolymer microspheres formed at [MAn] = [VAc] = 1.5 M .  相似文献   


8.
马来酸酐和苯乙烯是被广为研究的一对电荷转移复合物 (Chargetransfercomplex,简称CTC) ,而且能通过通常的自由基聚合发生交替共聚[1] .所得的聚合物由于酸酐基团的存在 ,很易进行大分子改性得到具有某些特殊功能的高分子 .不过 ,所得共聚物的分子量难以控制且分子量分布也较宽 .近年来发展起来的“活性” 可控自由基聚合越来越为人们所关注 ,因为采用这种方法不仅可对聚合物的分子量进行设计 ,同时分子量分布也较窄 ,也不需要活性离子型聚合那样严格的聚合条件 .关于烯类单体的活性自由基聚合迄今主要有氮氧自由基…  相似文献   

9.
The semicontinuous seeded emulsion copolymerization of vinyl acetate and methyl acrylate was investigated. The effect of type of process (starved process versus semi-starved process), type of feed (neat monomer addition versus monomer emulsion addition), amount of seed initially charged in the reactor, and feed rate on the time evolution of the overall conversion, copolymer composition, and polymer particle size was analyzed. It was found that, in the case of the starved process, both monomers, but mainly vinyl acetate, accumulated in the reactor. The preferential accumulation of vinyle acetate resulted in a drift of the copolymer composition. Both monomers accumulation and copolymer composition drift were reduced by increasing the amount of seed initially charged in the reactor and by decreasing the feed rate. For the semi-starved process, it was found that a vinyl aceatate rich copolymer was formed when a low methyl acrylate feed was used, whereas a methyl acrylate rich copolymer was obtained at high methyl acrylate feed rates. For both starved process and semi-starved process, the total number of polymer particles, after an initial increase, reached a plateau value which was the same in all of the experiments carried out. These results were analyzed by means of a mathematical model developed for this system.  相似文献   

10.
烷基硫醇诱发苯乙烯马来酸酐共聚合的研究   总被引:1,自引:1,他引:1  
<正> 硫醇由其上S—H弱键易遭受自由基进攻而用作调聚剂是熟知的。硫醇作为氧化-还原体系的一个组成促进丁苯乳液聚合也有报道,但单独硫醇,在相当于引发剂的用量范围内及常温条件下,诱发烯类单体或CTC(电荷转移络合物)型单体对的共聚报道极少。我们发现了微量硫醇在常温下对苯乙烯(St)、马来酸酐(MAn)共聚的催化效应,并  相似文献   

11.
An investigation of the copolymerization of allyl glycidyl ether (AGE) with methyl acrylate (MA) was performed in the presence of benzyl imidazole-1-carbodithioate (BICDT) on the thermal initiation condition. Results showed that the process has good characteristics of living free radical polymerization, i.e. the molecular weight of the obtained polymer increases linearly with monomer conversion, molecular weight distribution is very narrow, and a linear relationship between ln([M]0/[M]) and polymerization time is found. The copolymer structure containing epoxy groups was demonstrated from the 1H nuclear magnetic resonance (1H NMR) spectrum. It was found that the content of AGE in the copolymer increases with the increase in monomer conversion and molar faction of the AGE in the monomer feed. However, the polymerization could slow down when the fraction of AGE increases in the monomer feed. Taking advantage of living polymerization character, functional block copolymers PSt-b-P (MA-co-AGE) were prepared in the presence of PSt RAFT agent. __________ Translated from Journal of Anhui University of Science and Technology, 2006, 26(3): 56–61 [译自: 安徽理工大学学报]  相似文献   

12.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

13.
Radical copolymerizations of methyl allyl maleate (MAM) and methyl allyl fumarate (MAF) with styrene (St) are carried out in bulk using AIBN as an initiator at 60°C, and their copolymerization behaviors are compared in detail. The different rate features are observed with each other; thus in the MAF-St copolymerization the rate was quite enhanced and, also, the maximum rate was found at the molar ratio of 1:1 in the monomer feed, whereas no maximum phenomenon of the rate was apparent for the MAM—St copolymerization. The copolymerizability of MAF with St was quite high, whereas that of MAM was very poor. The cyclization of MAM or MAF was hindered by the highly reactive St monomer. These results are discussed in terms of the formation of the charge—transfer complex between MAF and St and, furthermore, the cyclocopolymerization kinetics involving the 17 elementary reactions as the propagation reactions.  相似文献   

14.
Methyl methacrylate/maleic anhydride (MMA/MAn) copolymers were synthesized using gamma rays. Preparation conditions such as irradiation dose, comonomer composition and type of diluent affecting the degree of comonomer conversion were investigated. The suitable diluent for obtaining reasonable MMA/MAn copolymer yield was acetone. The higher copolymer yield was achieved when the amount of methyl methacrylate in comonomer feed solutions as well as irradiation dose increased. The effect of ZnCl2 on the MMA/MAn copolymer yield and structure was studied. Characterization of the prepared MMA/MAn copolymers was performed using FTIR, and thermogravimetric and viscometric analysis. The derivatives of MMA/MAn copolymers were obtained by treating them with different reagents such as sulpha-drugs, hydroxylamine hydrochloride and 4-amino sodium salyciliate. The antimicrobial activity of MMA/MAn copolymers and their derivatives was examined. The activity of such copolymers against Staphylococcus aureus and Escherichia coli increased by increasing MAn content in the copolymer. The MMA/MAn copolymers treated with sulpha-drugs exhibited particularly high biological activity against different microorganisms. These results revealed that the prepared MMA/MAn copolymer and its derivatives have a broad antimicrobial activity.  相似文献   

15.
Maleic anhydride (MAn) was grafted onto the low molecular weight esters methyl decanoate (MD) and methyl 2‐ethylhexanoate (MEH) using the free‐radical initiators Lupersol‐101 and ‐130; the esters were used as model compounds for the copolymer poly(ethylene‐co‐methyl acrylate). The grafted products in both cases were isolated from the unreacted ester and were subjected to extensive analysis using spectroscopic and chromatographic techniques. Analysis of the grafted material indicated the presence of one or more succinic anhydride (SAn) residues grafted to the ester. In the case of the multiply grafted material it has been established conclusively by 13C‐NMR using 2,3‐13C2 labeled MAn that the multiple grafts exist as single units. A limited number of grafting experiments was performed on the copolymer in the melt and the graft‐modified copolymer was characterized spectroscopically. Single graft units were observed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1609–1618, 1999  相似文献   

16.
ABSTRACT

Propyl and butyl half esters of the alternating copolymer isobutylene/maleic anhydride (IB/MAn) are polymers of high acid content (4.67 and 4.38 milliequivalent acid/g polymer). These polymers exhibit good physical performance in thin films, such as absence of cracking and minimal curl. The anhydride ring of the copolymer IB/MAn is opened in refluxing alcohol at atmospheric or elevated pressure; conversion is monitored by an IR probe (1783 vs. 1733 cm?1). The polymers are stable up to about 50 °C. Weight loss corresponding to the reversion to the anhydride structure is observed at higher temperature, with concurrent increase of anhydride resonances in the IR. Thermal stability of the half esters is similar to that of alkyl half esters of the alternating copolymers ethylene/maleic anhydride (EMA) and methyl vinyl ether/maleic anhydride (Gantrez® AN 119). The 1-propanol solution of the propyl half ester of IB/MAn copolymer is a shear thinning fluid, a significant advantage when coating at high speeds.  相似文献   

17.
A kinetic investigation of the alternating copolymerization of butadiene and methyl methacrylate with the use of a system of ethylaluminum dichloride and vanadyl chloride as a catalyst was undertaken. The relation between the polymer yield and the molar fraction of methyl methacrylate in the feed was examined by continuous variation of butadiene and methyl methacrylate, the concentrations of total monomer, ethylaluminum dichloride, and vanadyl chloride being kept constant. This continuous variation method revealed that the polymer yield attains its maximum value with a monomer feed containing less than the 0.5 molar fraction of methyl methacrylate. This value of the molar fraction of methyl methacrylate affording the maximum polymer yield decreased on increasing the total monomer concentration but was not changed on varying the concentration of ethylaluminum dichloride. The number of active species estimated from the relation between yield and molecular weight of the polymer was almost constant, regardless of the molar fraction of methyl methacrylate in the feed. Consequently, it can be said that the maximum polymer yield depends mainly on the propagation reaction, not on the initiation reaction or the termination reaction. Three types of the mechanism have been discussed for this alternating copolymerization: polymerization via alternating addition of butadiene and methyl methacrylate complexed with ethylaluminum dichloride by the Lewis-Mayo scheme; polymerization via the ternary intermediate of butadiene, methyl methacrylate, and ethylaluminum dichloride; polymerization via the complex formation of butadiene and methyl methacrylate complexed with ethylaluminum dichloride occurring only at the growing polymer radical. From the kinetic results obtained, it was shown that the first and third schemes are excluded, and polymerization by way of the ternary intermediate is compatible with the data.  相似文献   

18.
Copolymerization of vinylene carbonate (VCA) with methyl trifluoroacrylate (MTFA) was carried out by gamma rays from 60Co at dose rates of 1 × 105 rad/h to 1 × 106 rad/h, temperatures of 0°C to 75°C, and molar ratios MTFA/VCA of 30/70 to 90/10 in the monomer mixture. By irradiation, VCA reacted with MTFA to give a white powder copolymer with low molecular weight. The copolymerization rate has a maximum at a concentration of 70 mol % VCA, and is proportional to the 0.92 power of dose rate. The apparent activation energy was 1.3 kcal/mol. Equimolar copolymer was obtained at molar ratio MTFA/VCA of 50/50 to 10/90. The reactivity ratios of both monomers, VCA and MTFA, were determined to be r(VCA) = 0.3 and r(MTFA) = 0.07, respectively.  相似文献   

19.
The free-radical copolymerization of methyl methacrylate (MMA) with styrene (St) in the presence of 2-mercaptoethanol (ME) was investigated in order to obtain ω-hydroxy oligomers with random copolymer-type chains of various compositions and molecular weights. Polymerizations at three different MMA/St molar ratios were carried out, while keeping constant the ME/monomer ratio. Monomer mixtures richer in MMA than in St were employed in order to attempt preparing lower polydispersity oligomers with monomodal molecular weight distribution (MWD). The molecular weights of the resulting oligomers increased with both conversion and MMA fraction in the feed, while polydispersities increased with conversion and decreased with MMA concentration in the initial monomer mixture. For the lower MMA fractions in the monomer feed, bimodal MWDs resulted beyond a certain conversion due to the faster relative consumption of ME than of monomer. Based on the pseudo-kinetic rate constant method, apparent chain transfer constants corresponding to the three different compositions of the monomer feed were estimated. The values obtained were in good agreement with the evolution of molecular weights and polydispersities with conversion and MMA fraction in the monomer feed. The co-oligomers prepared displayed functionalities around unity, making them suitable for the synthesis of macromonomers.  相似文献   

20.
[structure: see text]The methyl ester of the naturally occurring macrocyclic pentapeptide stephanotic acid, containing an unusual beta-substituted alpha-amino acid with a tryptophan C-6 to leucine beta-carbon link, has been synthesized. The key steps include the formation of this amino acid through a thioxo-oxazolidine intermediate and a Horner-Wadsworth-Emmons reaction using a phosphonoglycine, derived by a dirhodium(II)-catalyzed N-H insertion reaction, to give a dehydroamino acid and subsequent rhodium(I)-catalyzed asymmetric hydrogenation to introduce the modified tryptophan residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号