首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
ABSTRACT

3-O-Sulfo glucuronyl paragloboside derivatives (pentasaccharides) have been synthesized. The important intermediate designed for a facile sulfation in the last step and effective, stereocontrolled glycosidation, methyl (4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-α-D-glucopyranosyl trichloroacetimidate)uronate (8) was prepared from methyl [2-(trimethylsilyl)ethyl β-D-glucopyranosid]uronate (3) via selective 4-O-acetylation, 2-O-benzoylation, 3-O-levulinoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation. The glycosylation of 8 with 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (9) using trimethylsilyl trifluoromethanesulfonate gave 2-(trimethylsilyl)ethyl O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (10), which was transformed via removal of the benzyl group, benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the disaccharide donor 13. On the other hand, 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (20) as the acceptor was prepared from 2-(trimethylsilyl)ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) via O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, imidate formation, coupling with 2-(trimethylsilyl)ethyl O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (18), removal of the O-acetyl and N-phthaloyl group followed by N-acetylation. Condensation of 13 with 20 using trimethylsilyl trifluoromethanesulfonate afforded the desired pentasaccharide 21, which was transformed by removal of the benzyl group, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the pentasaccharide donor 24. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (25) with 24 gave the desired β-glycoside 26, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

2.
ABSTRACT

3-O-Sulfo glucuronyl neolactohexanosyl ceramide derivatives (heptasaccharides) have been synthesized. Condensation of 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 4-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (1) gave the desired β-glycoside 3, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (4) via removal of the O-acetyl and N-phthaloyl groups, followed by N-acetylation. Glycosylation of 4 with O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (5) using trimethylsilyl trifluoromethanesulfonate gave the target tetrasaccharide 6, which was transformed via removal of the benzyl group, O-benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the tetrasaccharide donor 9. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (10) with the imidate donor 9 using trimethylsilyl trifluoromethanesulfonate gave the desired heptasaccharide 11, which was transformed into the heptasaccharide imidate donor 14. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) with 14 gave β-glycoside 16, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

3.
Abstract

Four sialyl and sulfo Lex analogs containing glucose in place of N-acetylglucosamine, and a ceramide or 2-(tetradecyl)hexadecyl residue, have been synthesized. Condensation of O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-O-(4-O-acetyl-2,6-diO-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,4-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (1) with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3, diol (2) or 2-(tetradecyl)-hexadecyl-1-ol (3) gave the corresponding β-glycosides 4 and 7. Compound 4 was converted into the ganglioside 6 via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and saponification of the methyl ester group. Hydrolysis of the O-acyl groups in 7 followed by saponification of the methyl ester, gave sialyl Lex ganglioside analog 8 containing a branched fatty alkyl residue. On the other hand, glycosylation of O-(4-O-acetyl-2,6-di-O-benzoyl-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-[O-(2,3,4-tri-O-acetyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate (13), prepared from 2-(trimethylsilyl)ethyl O-(2,6-di-O-benzoyl-β-d-galactopyranosyl)-(1→4)-O-[(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)]-2,6-di-O-benzoyl-β-d-glucopyranoside (9) via selective 3-O-levulinylation, acetylation, removal of the 2-(trimethylsilyl)ethyl group, with 2 or 3, gave the desired β-glycosides 14 and 19. Selective reduction of the axido group in 14 followed by coupling with octadecanoic acid gave the ceramide derivative 16. Removal of the levulinyl group in 16 and 19, treatment with sulfur trioxide pyridine complex and subsequent hydrolysis of the protecting groups yielded the corresponding sulfo Lex analogs 18 and 21.  相似文献   

4.
Abstract

Stereocontrolled synthesis of sialyl Lex epitope and its ceramide derivative with regard to the introduction of galactose or β-D-galactosyl ceramide into the terminal N-acetylglucosamine residue of sialyl Lex determinant is described. Königs-Knorr condensation of 2-(trimethylsilyl)ethyl 2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (4) with 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-D-glucopyranosyl bromide (5) gave the desired β-glycoside 6, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-4, 6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(l→3)-2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (8) via removal of the phthaloyl and O-acetyl groups, followed by N-acetylation and 4, 6-O-benzylidenation. Glycosylation of 8 with methyl 2, 3, 4-tri-O-benzyl-1-thio-β-L-fucopyranoside (9) gave the α-glycoside (10), which was transformed by reductive ring-opening of the benzyliderie acetal into the acceptor (11). Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 11 with methyl O-(methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2, 4, 6-tri-O-benzoyl-l-thio-β-D-galactopyra-noside (12) afforded the desired pentasaccharide (13), which was converted into the α-trichloroacetimidate 16 via reductive removal of the benzyl groups, then O-acetylation, removal of the 2-(trimethyIsilyl)ethyl group and treatment with trichloroacetonitrile. Condensation of 16 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l, 3-diol (18) gave the β-glycoside 19, which was transformed into the title compound 21, via reduction of the azido group, coupling with octadecanoic acid, O-deacylation and hydrolysis of the methyl ester group. On the other hand, O-deacylation of 13 and subsequent hydrolysis of the methyl ester group gave the pentasaccharide epitope 17.  相似文献   

5.
ABSTRACT

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lewis X is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (1) with methyl 2,3,4-tri-O-benzyl-1-thio-β-L-fuco-pyranoside (4) gave the α-glycoside (5), which was converted by reductive ring-opening of the benzylidene acetal into the glycosyl acceptor (6). Dimethyl(methylthio)sulfonium triflate-promoted coupling of 6 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside (7) afforded the desired hexasaccharide 8 in good yield. Compound 8 was converted into the α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octa-decene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azide group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 16.  相似文献   

6.
Abstract

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lea, is described. Methylsulfenyl bromide-silver triflate-promoted coupling of 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (2) with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (3) afforded the pentasaccharide 4a and 5a in good yields. Glycosylation of 4a with methyl 2,3,4-tri-O-benzyl-1-thio-β-l-fucopyranoside (6) by use of N-iodosuccinimide (NIS) — trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 7. Compound 7 was converted into the α-trichloroacetimidate 10, via reductive removal of benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1, 3-diol (11), gave the β-glycoside 12. Finally, 12 was transformed, via selective reduction of the azide group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

7.
Abstract

A stereocontrolled, facile total synthesis of ganglioside GM2 is described. Coupling of 2- (trimethylsilyl)ethyl O-(2,6-di-O-benzyl-(β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2), prepared from 2-(trimethylsilyl)ethyl β-lactoside (1) by selective 3′,4′-O-isopropylidenation, O-benzylation, and subsequent removal of the isopropylidene group, with methyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy -2-thio-D-glycero-D-galacto -2-nonulopyranosid)onate (4) using N-iodosuccini-midc (NIS), gave the trisaccharide (5), which on condensation with methyl 6-O-benzoyl -2-dcoxy-3,4-O-isopropylidene-2-phthalimido-l-thio-β-D-galactopyranoside (11), gave the protected ganglioside GM2 oligosaccharide 12. Compound 12 was transformed, via O-deisopropylidenation, O-acetylation, removal of the phthaloyl group, N-acetylation, removal of the benzyl groups followed by (O-acetylation, selective removal of the 2-(rximethylsilyl)ethyl group, and subsequent imidate formation, into the final glycosyl donor 19. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (20) with the α-trichloroacetimidate 19 gave the β-glycoside 21, which on channeling through selective reduction of the azide group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title ganglioside.  相似文献   

8.
Abstract

A stereo controlled, facile total synthesis of gangliosides GM1 and GD1a, in connection with systematic synthesis of ganglio-series of ganglioside, is described. Glycosylation of 2-(trimethylsilyl) ethyl O-(2-acetamido-6-O-benzoyl-2-deoxy-(β-D-galactopyranosyl)-(l→4)-O-[(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2–nonulopyranosylonate)-(2→3)]-O-2,6-di-O-benzyl-β-D-galacto-pyranosyl)-(l→40)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4), with methyl 2,4,6-tri-O-benzoyl-3-O-benzyl-l-thio-β-D-galactopyranoside (8) or methyl O-(methyl 5-acetamido -4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacro-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-l-thio-β-D-galactopyranoside (9) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) or dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the corresponding [β-glycoside 10 and 18 in 66 and 62% yields, which were converted, via reductive removal of the benzyl groups, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and subsequent imidate formation, into the α-trichloroacetimidates 13 and 21. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (14) with 13 or 21 by use of trimethylsilyl trifluoromethanesulfonate gave the corresponding β-glycoside 15 and 22, which on channeling through selective reduction of die azido group, coupling of the thus formed amino group with octadecanoic acid, O-deacylation, and saponification of the methyl ester group, gave the tital gangliosides GM1 and GD1a.  相似文献   

9.
Abstract

A stereocontrolled synthesis of I-active ganglioside analog is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-O-benzyl-4,6-O-benzylidene-β-d-galactopyranosyl)-(1 → 4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) with methyl 4-O-acetyl-1,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (10) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) gave the desired trisaccharide 11, which was transformed into trisaccharide acceptor 14 via removal of the phthaloyl group followed by N-acetylation, and debenzylidenation. Glycosylation of 14 with methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (8) gave the biantennary compound 15, which was transformed into the acceptor 16. Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 16 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (17) afforded the desired hexasaccharide 19. Coupling of the hexasaccharide acceptor 20, prepared from 19 by reductive ring-opening of benzylidene acetal, with 17 gave octasaccharide derivative 21. Compound 21 was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor 24. Condensation of 24 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (18) gave the β-glycoside 25, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound 28.  相似文献   

10.
Abstract

Ganglioside GM4 and GM3 analogs, containing 3-deoxy-D-glycero-D-galacto-2-nonulopyranosonic acid (KDN) in place of N-acetylneuraminic acid, have been synthesized. KDN, prepared by the condensation of oxalacetic acid with D-mannose, was converted into methyl (phenyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-2-thio-D-glycero-D-galacto-2-nonulopyranosid)onate (2) via methyl esterification, O-acetylation and replacement of the anomeric acetoxy group with phenyl thio. Glycosylation of 2 with 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-D-galactopyranoside (3) or 2-(trimethylsilyl)ethyl O-(6-O-benzoyl-β-D-galactopyranosyl)-(1→4)-2,6-di-O-benzoyl-β-D-glucopyranoside (4) was performed, using N-iodosuccinimide-trimethylsilyl trifluoromethanesulfonate as the glycosyl promoter, to give 2-(trimethylsilyl)ethyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-6-O-benzoyl-β-D-galacto-pyranoside (5) and 2-(trimethylsilyl)ethyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-(6-O-benzoyl-β-D-galactopyrano-syl)-(l→4)-(2,6-di-O-benzoyl-β-D-glucopyranoside (9), respectively. Compounds 5 and 9 were converted via O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the corresponding trichloroacetimidates 8 and 12, respectively. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-l,3-diol (13) with 8 and 12 in the presence of boron trifluoride etherate afforded the expected β-glycosides 14 and 17, which were transformed via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation and de-esterification, into the target gangliosides 16 and 19 in high yields.  相似文献   

11.
Abstract

A stereocontrolled synthesis of α-series ganglioside GM1α (III6Neu5AcGgOse4Cer) is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (1) with the suitably protected galactosamine donor, methyl 3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-galactopyranoside (4) gave the desired trisaccharide, which was transformed into the trisaccharide acceptor via removal of the phthaloyl and O-acetyl groups followed by N-acetylation. Glycosylation of this acceptor with methyl 3-O-benzyl-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) gave the asialo GM1 saccharide derivative, which was transformed into the acceptor by removal of benzylidene group. Coupling of this gangliotetraose acceptor with phenyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d-glcero-d-galacto-2-nonulopyranosyl)onate by use of NIS-TfOH afforded the desired GM1α oligosaccharide derivative in high yield, which was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor. Condensation of this imidate derivative with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) gave the β-glycoside, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound GM1α.  相似文献   

12.
Abstract

A first total synthesis of gangliosides GD1c and GT1a containing Neu5Acα(2→8) Neu5Acα(2→3)Gal residue in their non-reducing terminal is described. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylono-11,9-lactone) -4,7- di-O-acetyl-3,5-dideoxy-D-glycero-α-D-galcto-2-nonulopyranosyranosylanate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-gala-ctopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyranosyl)- (1→4) -O -(2,3,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2) or 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-D-galactopyranosyl)-(1→4)-(9-[methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)]-O-(2,6-di-O-benzyl-β-D-galactopyranosyl) - (1→4) - 2,3,6-tri-O-benzyl-β-D-glucopyranoside (3) in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) gave the corresponding hexa-and heptasaccharide derivatives 4 and 5, respectively. These oligosaccharides were converted into the α-trichloroacetimidates 10 and 11 via reductive removal of the benzyl groups and/or benzylidene group, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and treatment with trichloroacetonitrile, which, on coupling with 2-azidosphingosine derivatives 12 or 13, gave the β-glycosides 14 and 15, respectively. Finally, 14 and 15 were transformed, via selective reduction of the azido group, coupling with octadecanoic acid and removal of all protecting groups, into the title gangliosides GD1c 18 and GT1a 19.  相似文献   

13.
Abstract

KDN-Lex ganglioside analogs (10, 13, 16 and 19) containing the modified reducing terminal and L-rhamnose in place of L-fucose have been synthesized. Glycosidation of methyl 2,3,4-tri-O-benzyl-1-thio-α-L-rhamnopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-α-D-galacopyranoside (2), followed by reductive ring opening of the benzylidene acetal, gave 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-rhamnopyranosyl)-(1→3)-O-(2-acet-amido-6-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4). The tetrasaccharide 4 was coupled with methyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside(5), using dimethyl(methylthio)sulfonium triflate (DMTST), to give the hexasaccharide 6, which was converted into compound 11 in the usual manner. Compounds 8 and 11 were transformed, via bromination of the reducing terminal, radical reduction, O-deacylation and saponification of the methyl ester, into the desired KDN-Lex hexasaccharides (10, 13). On the other hand, glycosylation of 2-(tetradecyl)hexadecanol with α-trichloroacetimidates 14 and 17, afforded the target ganglioside analogs 16 and 19.

  相似文献   

14.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

15.
Abstract

Starting from L-fucose, D-glucose and lactose, methyl O-[2,3-di-O-benzoyl-4, 6-O-(4-methoxybenzylidene)-β-D-glucopyranosyl]-(1→4)-2,3-di-O-benzoyl-α-L-fucopyranoside and methyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-O-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate)-(1→4)-2,3-di-O-benzoyl-α-L-fucopyranoside were synthesized. Removal of protecting groups gave the tetrasaccharide repeating unit of the antigen from Klebsiella type-16 in the form of its methyl ester methyl glycoside.  相似文献   

16.
Abstract

Three sialyl-Lex ganglioside analogs containing carboxymethyl, sulfate, and phosphate groups in place of the sialic acid moiety, have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)-O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl) - (1→3) - 2, 4, 6-tri-O-benzyl-β-d-galactopyranoside (10) with methyl 2,4,6-tri-O-benzoyl-3-O-(methoxycarbonyl)methyl-1-thio-β-d-galactopyranoside (6) or methyl 2-O-benzoyl-4,6-O-benzylidene-3-O-levulinoyl-1-thio-β-d-galactopyranoside (9) using dimethyl-(methylthio)sulfonium triflate (DMTST) as a promoter, afforded the corresponding tetrasaccharide derivatives 11 and 19. Compounds 11 and 19 were converted into the α-trichloroacetimidates 14 and 23, via reductive removal of the benzyl and benzylidene groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) or 2-(tetradecyl)hexadecan-1-ol (24), gave the lipophilic derivatives 16 and 25. Compound 16 was transformed, via selective reduction of the azido group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 18 in good yield. Compound 25 was treated with hydrazine acetate to give compound 26, which in turn was transformed, via sulfation or phosphorylation, and O-deacylation, into the target compounds 28 and 31.  相似文献   

17.
Abstract

A first total synthesis of a cholinergic neuron-specific ganglioside, GQ1bα (IV3Neu5Acα, III6Neu5Acα, II3Neu5Acα2-Gg4Cer) is described. Regio- and stereo-selective monosialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3,4-O-isopropylidene-β-d-galactopyranosyl)-(1→4)-O-(2,6-di-O-benzyl-β-dgalactopyranosyl)-(1→4)- O-2,3,6-tri-O-benzyl-β-dglucopyranoside (4) with methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d glycero-d galacto-2-nonulopyranosid) onate (5), and subsequent dimericsialylation of the hydroxyl group at C-3 of the Gal residue with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d glycero-α-d galacto-2-nonulopyranosylono-1′,9-lactone)-4, 7-di-O-acetyl-3,5-dideoxy-2-thio-d glycero-d galacto-2-nonulopyranosid]onate (7), using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 8 containing α-glycosidically-linked mono- and dimeric sialic acids. This was transformed into the acceptor 9 by removal of the isopropylidene group. Condensation of methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d glycero-α-d galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-dgalactopyranoside (10) with 9, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 11 in high yield. Compound 11 was converted into α-trichloroacetimidate 14, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15), gave the β-glycoside 16. Finally, 16 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 18 in good yield.  相似文献   

18.
Abstract

Starting from L-arabinose and methyl β-D-galactopyranoside, methyl 2,3,4-tri-O-benzyl-6-O-[2,4,6-tri-O-benzoyl-3-O-(23,5-tri-O-benzoyl-α-L-arabinofuranosyl)-β-D-galactopyranosyl]-β-D-galactopyranoside 10 has been synthesized. Removal of protecting groups gave the methyl glycoside 12 of a trisaccharide representative of a repeating unit of arabinogalactan (AGP) polysaccharides.

  相似文献   

19.
Several thiazole nucleosides structurally related to tiazofurin (1) and ARPP (2) were prepared, in order to determine whether these nucleosides had enhanced antitumor/antiviral activities. Ring closure of 1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)thiourea (4) with ethyl bromopyruvate (5a) gave ethyl 2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosylamino)thiazole-4-carboxylate (6a) . Treatment of 6a with sodium methoxide furnished methyl 2-(β-D-ribopyranosylamino)thiazole-4-carboxylate (9) . Ammonolysis of the corresponding methyl ester of 6a gave a unique acycloaminonucleoside 2-[(1R, 2R, 3R, 4R)(1-benzamido-2,3,4,5-tetrahydroxypentane)amino]-thiazole-4-carboxamide (7a) . Direct glycosylation of the sodium salt of ethyl 2-mercaptothiazole-4-carboxylate (12) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide (11) gave the protected nucleoside 10 , which on ammonolysis provided 2-(β-D-ribofuranosylthio)thiazole-4-carboxamide (3b) . Similar glycosylation of 12 with 2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl chloride (13) , followed by ammonolysis gave 2-(2-deoxy-β-D-ribofuranosylthio)thiazole-4-carboxamide (3c) . The structural assignments of 3b, 7a , and 9 were made by single-crystal X-ray analysis and their hydrogen bonding characteristics have been studied. These compounds are devoid of any significant antiviral/antitumor activity in vitro.  相似文献   

20.
ABSTRACT

A systematic study is presented for the most common methods used for the preparation of the disaccharide benzyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (9) from “standard 2-amino-2-deoxyglucopyranosyl donors” 1-6 and benzyl 3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (7) as an acceptor. It was found that the highest yield was obtained when the trichloroacetimidate derivative 1 was coupled to the 4 position of acceptor 7. In an analogous manner, the disaccharides allyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6,-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (10), benzyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'4)-3,6-di-O-benzoyl-2-deoxy-2-phthalimido-β-D-galactopyranoside (12), and allyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1→'3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) were prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号