首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
ABSTRACT

For five carbohydrate substrates [methyl 4,6-O-(phenylmethylene)-1-thio-α-D-glucopyranoside 1a, 1-cyano-1-deoxy-4,6-O-(phenylmethylene)-α-D-galactopyranose 2a, methyl α-D-xylopyranoside 3a, methyl β-D-arabinopyranoside 4a, and methyl 5-O-(tert-butyldiphenylsilyl)-α-D-ribofuranoside 5a], selective mono-triflation was achieved where the reacting hydroxyl is cis and vicinal to a heteroatom.  相似文献   

2.
Abstract

The reaction of phenyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthaIimido-l-thio-β-D-glucopyranoside with methyl 3,4,6-tri-O-benzyl-α-D-mannopyranoside catalysed by iodonium ion (TfOH-NIS) followed by deacylation-acetylarion afforded disaccharide 11. which was readily converted (in four steps) to bromide 12. A similar glycosylarion with phenyl 2,3,4,6-tetra-O-acetyl-l-thio-D-glucopyranoside of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside 16 followed by O-deacetylation of the resulting intermediate gave disaccharide 18. The 4,6-O-benzylidene derivative of 18 was acetylated then deacetaled to give diol 21. This diol acceptor was condensed with bromide 12 (promoted by mercuric cyanide) to give the partially protected tetrasaccharide derivative 22 which was O-deacetylated and then subjected to catalytic hydrogenation to furnish the title tetrasaccharide 6. The structure assigned to 6 was supported by 1H and 13C NMR spectral data and FAB mass spectroscopy.  相似文献   

3.
Abstract

Stereoselective α-D-galactosylation at the position 3 of 4,6-O-substituted derivatives of methyl 2-acetamido-2-deoxy-α-D-glucopyranoside is described. Glycosyl chlorides derived from 3,4,6-tri-O-acetyl-2-O-benzyl- and 2-O-(4-methoxybenzyl)-D-galactopyranose have been used as glycosyl donors. Methyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-(3,4,6-tri-O-acetyl-α-D-galactopyranosyl)-α-D-glucopyranoside (27) and methyl 2-acetamido-4,6-di-O-benzyl-2-deoxy-3-O-(3,4,6-tri-O-acetyl-α-D-galactopyranosyl)-α-D-glucopyranoside (31) have been prepared.  相似文献   

4.
Abstract

KDN-Lex ganglioside analogs (10, 13, 16 and 19) containing the modified reducing terminal and L-rhamnose in place of L-fucose have been synthesized. Glycosidation of methyl 2,3,4-tri-O-benzyl-1-thio-α-L-rhamnopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-α-D-galacopyranoside (2), followed by reductive ring opening of the benzylidene acetal, gave 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-rhamnopyranosyl)-(1→3)-O-(2-acet-amido-6-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4). The tetrasaccharide 4 was coupled with methyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside(5), using dimethyl(methylthio)sulfonium triflate (DMTST), to give the hexasaccharide 6, which was converted into compound 11 in the usual manner. Compounds 8 and 11 were transformed, via bromination of the reducing terminal, radical reduction, O-deacylation and saponification of the methyl ester, into the desired KDN-Lex hexasaccharides (10, 13). On the other hand, glycosylation of 2-(tetradecyl)hexadecanol with α-trichloroacetimidates 14 and 17, afforded the target ganglioside analogs 16 and 19.

  相似文献   

5.
ABSTRACT

The stereocontrolled synthesis of methyl α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (EC, 1), methyl α-L-rhamnopyranosyl-(1→3)-[α-D-glucopyranosyl-(1→4)]-α-L-rhamnopyranoside (B(E)C, 3) and methyl α-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-glucopyranoside (ECD, 4) is described; these constitute the methyl glycosides of branched and linear fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a. Emphasis was put on the construction of the 1,2-cis EC glycosidic linkage resulting in the selection of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride (8) as the donor. Condensation of methyl 2,3-O-isopropylidene-4-O-trimethylsilyl-α-L-rhamnopyranoside (11) and 8 afforded the fully protected αE-disaccharide 20, as a common intermediate in the synthesis of 1 and 3, together with the corresponding βE-anomer 21. Deacetalation and regioselective benzoylation of 20, followed by glycosylation with 2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (15) afforded the branched trisaccharide 25. Full deprotection of 20 and 25 afforded the targets 1 and 3, respectively. The corresponding βE-disaccharide, namely, methyl β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (βEC, 2) was prepared analogously from 21. Two routes to trisaccharide 4 were considered. Route 1 involved the coupling of a precursor to residue E and a disaccharide CD. Route 2 was based on the condensation of an appropriate EC donor and a precursor to residue D. The former route afforded a 1:2 mixture of the αE and βE condensation products which could not be separated, neither at this stage, nor after deacetalation. In route 2, the required αE-anomer was isolated at the disaccharide stage and transformed into 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (48) as the EC donor. Methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyran-oside (19) was preferred to its benzylidene analogue as the precursor to residue D. Condensation of 19 and 48 and stepwise deprotection of the glycosylation product afforded the target 4.  相似文献   

6.
The disaccharide methyl (4-O-benzoyl-3-O-benzyl-2-O-acetyl-α-L-rhamno pyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (13) was obtained in an excellent yield of 88% using methyl (allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate ((12) as the glycosyl acceptor and a slight excess of the 1,2-di-O-acetyl-rhamnoglycosyl donor 5a. Disaccharide 13 is a key intermediate that can be used either as a glycosyl acceptor or glycosyl donor for the preparation of rhamnogalacturonan fragments. Here, introduction of the trichloroacetimidate function at the anomeric center gave the disaccharide glycosyl donor 28, which could be applied in a blockwise glycosylation reaction to form the L-Rha-α(1→4)-D-GalA-α(1→4)-D-GalA trisaccharide 29. Generally, on condition that no neighboring group effect influenced the reaction at the anomeric center of the α-trichloroacetimidate galacturonate glycosyl donors (20–22, 28), α-glycosidic linkages were nearly exclusively formed, except in the case of the 4-O-methylgalactopyranosyluronate 22.  相似文献   

7.
Abstract

The regioselective enzymic hydrolysis of methyl 2,3-di-O-acetyl-5-deoxy-α-D-xylofuranoside (1) and methyl 2,3-di-O-acetyl-5-deoxy-β-D-xylofuranoside (2) in the presence of pig liver esterase (PLE) was studied by GLC. Diacetate 2 gave exclusively methyl 3-O-acetyl-5-deoxy-β-D-xylofuranoside (6) while diacetate 1 produced both methyl 2-O-acetyl-5-deoxy-α-D-xylofuranoside (3) and methyl 3-O-acetyl-5-deoxy-α-D- xylofuranoside (4) in low yield. At high conversion, methyl 5-deoxy-α-D-xylofuranoside (7) was the only product. The first-order rate constants, Michaelis constants, and maximal velocities were determined for 1, 2, and the monoacetates 3 - 6. The results were interpreted on the basis of a recent active-site model for PLE.  相似文献   

8.
The trisaccharide derivative methyl 2-O-[4,6-di-O-acetyl-3-O-(2,3,4,6-tetra-O-benzyl-α-D-gal-actopyranosyl)-2-deoxy-2-phthalimido-β-D-gluco-pyranosyl]-4,6-O-benzylidene-β-D-mannopyranoside (12) was obtained when 3-O-(2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl)-4,6-di-Oacetyl-2-deoxy-2-phtha-limido-β-D-glucopyranosyl trichloroacetimidate (8) was allowed to react with methyl 3-O-benzyl-4,6-O-benzylidene-β-D-mannopyranoside (11) in presence of trimethylsilyl triflate. Removal of protecting groups then gave the desired trisaccharide.  相似文献   

9.
ABSTRACT

Addition reactions of O-acetylated glycal esters of Kdo mono-, α-(2→8)- and α-(2→4)- linked Kdo disaccharide derivatives 1a - c with NIS in acetic acid afforded good yields of trans-diaxial as well as minor amounts of trans-diequatorial and cis-configured 2-O-acetyl-3-deoxy-3-iodo derivatives, which were efficiently reduced with Bu3SnH/AIBN to give the corresponding per-O-acetylated Kdo methyl ester derivatives. Similar reactions of 1a with NBS or NCS furnished the trans-diaxial 2-O-acetyl-3-bromo-3-deoxy- as well as 3-chloro-3-deoxy derivatives as the main products. Reaction of 1a with NBS in aqueous MeCN provided the 2,3-trans-bromohydrin derivative 11c, which upon treatment with DBU in MeCN gave the elimination product 11 and the α-2,3-anhydro derivative 12 as a suitable donor of glycosides with D-glycero-D-talo- or D-glycero-D-galacto configuration, respectively.  相似文献   

10.
Abstract

DAST-assisted rearrangement of 3-O-allyl-4-O-benzyl-α-l-rhamnopyranosyl azide followed by treatment of the generated fluorides with ethanethiol and BF3·OEt2 gave glycosyl donor ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside. Stereoselective glycosylation of methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside with ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside, under the agency of NIS/TfOH afforded methyl 3-O-(3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzyli-dene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Removal of the allyl function of the latter dimer, followed by condensation with properly protected 2-azido-2-deoxy-glucosyl donors, in the presence of suitable promoters, yielded selectively methyl 3-O-(3-O-[6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranosyl]-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Deacetylation and subsequent glycosylation of the free HO-6 with phenyl 2,3,4,6-tetra-O-benzoyl-1-seleno-β-D-glucopyranoside in the presence of NIS/TfOH furnished a fully protected tetrasaccharide. Deprotection then gave methyl 3-O-(3-O-[6-O-{β-D-glucopyranosyl}-2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-acetamido-2,6-dideoxy-α-L-glucopyranosyl)-2-acetamido-2-deoxy-β-D-glucopyranoside.  相似文献   

11.
Abstract

α,β-(1→4)-Glucans were devised as models for heparan sulfate with the simplifying assumptions that carboxyl-reduction and sulfation of heparan sulfate does not decrease the SMC antiproliferative activity and that N-sulfates in glucosamines can be replaced by O-sulfates. The target oligo-saccharides were synthesized using maltosyl building blocks. Glycosylation of methyl 2,3,6,2′,3′,6′-hexa-O-benzyl-β-maltoside (1) with hepta-O-acetyl-α-maltosyl bromide (2) furnished tetrasaccharide 3 which was deprotected to α-D-Glc-(1→4)-β-D-Glc-(1→4)-α-D-Glc-(1→4)-β-D-Glc-(1→OCH3) (5) or, alternatively, converted to the tetrasaccharide glycosyl acceptor (8) with one free hydroxyl function (4?′-OH). Further glycosylation with glucosyl or maltosyl bromide followed by deblocking gave the pentasaccharide [β-D-Glc-(1→4)-α-D-Glc-(1→4)]2-β-D-Glc-(1→OCH3) (11) and hexasaccharide [α-D-Glc-(1→4)-β-D-Glc-(1→4)2-α-D-Glc-(1→4)-β-D-Glc-(1→OCH3) (14). The protected tetrasaccharide 3 and hexasaccharide 12 were fully characterized by 1H and 13C NMR spectroscopy. Assignments were possible using 1D TOCSY, T-ROESY, 1H,1H 2D COSY supplemented by 1H-detected one-bond and multiple-bond 1H,13C 2D COSY experiments.  相似文献   

12.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

13.
ABSTRACT

Stereocontrolled, stepwise synthesis of methyl α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside (A(E)B, 1) and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→2)-[α-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside (DA(E)B, 2) is described; these constitute the methyl glycosides of fragments of the O-specific polysaccharide of Shigella flexneri serotype 5a. Two routes to trisaccharide 1 were considered. Route 1 involved the coupling of a precursor to residue A and a disaccharide EB, whereas route 2 was based on the condensation of a precursor to residue E and a disaccharide AB. Rather surprisingly, the latter afforded the β-anomer of 1, namely methyl α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-L-rhamnopyranoside as the major product. Route 1 was preferred. Overall, several observations made during this study suggested that, for the construction of higher fragments, a suitable precursor to rhamnose A would require protecting groups of low bulkiness at position 3 and 4. Therefore, the 2-O-acetyl-3,4-di-O-allyl-α-L-rhamnopyranosyl trichloroacetimidate (35) was the precursor of choice to residue A in the synthesis of the tetrasaccharide 2. The condensation product of 35 and methyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-4-O-benzyl-α-L-rhamnopyranoside was selectively deacylated and condensed to 2-trichloroacetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl trichloroacetimidate to afford the corresponding fully protected tetrasaccharide 45. Controlled stepwise deprotection of the latter proceeded smoothly to afford the target 2. It should be emphasised that the preparation of 45 was not straightforward, several donors and coupling conditions that were tested resulted only in the complete recovery of the acceptor. Distortion of several signals in the 13C NMR spectra of the fully or partially protected tetrasaccharide intermediates suggested that steric hindrance, added to the known low reactivity of HO-2 of rhamnosyl acceptors, probably played a major role in the outcome of the glycosidation attempts.  相似文献   

14.
Abstract

Synthesized from D-xylose, methyl 5-deoxy-α-D-xylofuranoside (1) and methyl 5-deoxy-β-D-xylofuranoside (2) were obtained in overall yields of 24 and 26 %, respectively. The key step in the synthesis was the separation of an anomeric mixture on a strong anion exchanger in OH? form. NMR data and mass spectra of title compounds 1, 2, methyl 2,3-di-O-acetyl-5-deoxy-α-D-xylofuranoside (3), and methyl 2,3-di-O-acetyl-5-deoxy-β-D-xylofuranoside (4) are discussed. The conformations of 1 and 2 were established from the best fit between calculated and experimental coupling constants using Karplus equation.  相似文献   

15.
ABSTRACT

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lewis X is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (1) with methyl 2,3,4-tri-O-benzyl-1-thio-β-L-fuco-pyranoside (4) gave the α-glycoside (5), which was converted by reductive ring-opening of the benzylidene acetal into the glycosyl acceptor (6). Dimethyl(methylthio)sulfonium triflate-promoted coupling of 6 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside (7) afforded the desired hexasaccharide 8 in good yield. Compound 8 was converted into the α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octa-decene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azide group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 16.  相似文献   

16.
Abstract

2-Azido-4-O-benzoyl-2,6-dideoxy-3-O-methyl-D-allopyranose, needed as one of the building blocks for construction of a novel cyclodextrin-like compound, was prepared in the form of crystalline β-anomer 6 from methyl 2-azido-4,6-O-benzylidene-2-deoxy-α-D-allopyranoside 1. As a model of α-glycosidation necessary for formation of a cyclic structure, 6 was converted into the corresponding β-glycosyl trichloroacetimidate and coupled with methyl 6-O-benzyl-2,3-di-O-methyl-α-D-glucopyranoside 8, giving α(1→4)-linked disaccharide derivative 9.  相似文献   

17.
ABSTRACT

Starting from the known methyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl-(1→4)-2-O-benzoyl-α-L-rhamnopyranoside, the stepwise linear syntheses of methyl α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→ 3)-[α-D-glucopyranosyl-(1→ 4)]-α-L-rhamnopyranoside (AB(E)C, 4), and methyl 2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→ 2)-α-L-rhamnopyranosyl-(1→ 3)-[α-D-glucopyranosyl-(1→4)]-α-L-rhamnopyranoside (DAB(E)C, 5) are described; these constitute the methyl glycosides of a branched tetra- and pentasaccharide fragments of the O-specific polysaccharide of Shigella flexneri serotype 2a, respectively. The chemoselective O-deacetylation at position 2B and/or 2A of key tri- and tetrasaccharide intermediates bearing a protecting group at position 2C was a limiting factor. As such a step occurred once in the synthesis of 4 and twice in the synthesis of 5, the regioselective introduction of residue A on a B(E)C diol precursor (12) and that of residue D on an AB(E)C diol precursor (19) was also attempted. In all cases, a trichloroacetimidate donor was involved. The latter pathway was found satisfactory for the construction of the target 4 using the appropriate tri-O-benzoyl rhamnosyl donor. However, attempted chain elongation of 12 using 2-O-acetyl-3,4-di-O-benzyl-α-L-rhamnopyranosyl trichloroacetimidate (8) resulted in an inseparable mixture which needed to be benzoylated to allow the isolation of the target tetrasaccharide. Besides, condensation of the corresponding tetrasaccharide acceptor and the N-acetylglucosaminyl donor was sluggish. As the target pentasaccharide was isolated in a poor yield, this route was abandoned.  相似文献   

18.
ABSTRACT

The partially deprotected trisaccharide 17 has been synthesized as an analogue of the repeating unit of the backbone of rhamnogalacturonan I. The trisaccharide 17 was obtained after prior selective derivatization of HO-3 and HO-4 of a rhamnopyranose cyanoethylidene glycosyl donor, followed by coupling with a tritylated galactopyranosyluronic acceptor (11), selective removal of the acetyl group at the O-2' position of the formed disaccharide 12, and glycosylation of the HO-2' position with methyl (ethyl 2,3-di-O-benzyl-4-O-p-methoxybenzyl-1-thio-β-D-galactopyranosid)uronate (14) providing methyl (methyl 2,3-di-O-benzyl-4-O-p-methoxybenzyl-α-D-galactopyranosyluronate)-(1→2)-(4-O-benzoyl-3-O-benzyl-α-L-rhamnopyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (15). Finally, palladium chloride catalyzed deallylation (16) and hydrogenolysis over Pd-C resulted in methyl (methyl α-D-galactopyranosyluronate)-(1→2)-(4-O-benzoyl-α-L-rhamnopyranosyl)-(1→4)-α/β D-galactopyranuronate (17).  相似文献   

19.
The copper-catalyzed 1,3-dipolar cycloaddition reaction between ethyl 2,3,4-tri-O-actetyl-6-azido-6-deoxy-1-thio-β -d-glucopyranoside (2), ethyl 2,3,4-tri-O-actetyl-6-azido-6-deoxy-1-thio-β -d-galactopyranoside (4), methyl 2,3,4-tri-O-acetyl-6-azido-6-deoxy-α -d-mannopyranoside (7), and methyl 2,3,6-tri-O-acetyl-2-azido-2-deoxy-β -d-glucopyranoside (9), and tert-butyl-protected Fmoc-asparaginic acid propargylamide (10) gave the corresponding protected glycosyl amino acid building blocks 11, 13, 15, and 17 in 67% to 95% yield. The latter were converted into the corresponding pentafluorophenyl esters 12, 14, 16, and 18, which were used for a spot synthesis of a combinatorial library containing 256 glycotetrapeptides. The library was screened for lectin-binding affinity with the lectins Concanavalin A (Con A), phaseolus vulgaris (PHA-E), and galantus nivalis (GNA).  相似文献   

20.
ABSTRACT

The 13C NMR spectra of a range of di-O-isopropylidene acetals of α,α-trehalose and its analogues 1, 2, 4-7 have been studied Attention has been focussed on the chemical shifts of the acetal carbon and methyl groups of the acetals. These parameters are characteristic of ring-size (1,3-dioxolane and 1,3-dioxane). Di-n-butylstannylene and cyclic orthoester intermediates 9 and 12 of 2,6-di-O-benzoyl-α-D-galactopyranosyl 2,6-di-O-benzoyl-α-D-galactopyranoside (8) were used to synthesize the partially protected trehalose analogue having chain extension at positions 4,4′ and 3,3′ (10 and 13) respectively. Acetonation of the synthetic trehalose type disaccharide yielded mainly 3,4:3′,4′-di-O-isopropylidene derivative 4. The benzoylation of 4 followed by acid hydrolysis gave 8 in 85% yield, which was the key intermediate for the synthesis of 10 and 13  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号