首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Abstract

4-Nitrophenyl 2,3-O-isopropylidine-α-D-mannopyranoside 2 was condensed with O-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl)-(1→2)-3,4,6-tri-O-acetyl-α-D-mannopyranosyl bromide 1 and 2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl bromide 11 in the presence of mercuric cyanide. Products were deprotected to yield, respectively, 4-nitrophenyl O-α-D-mannopyranosyl-(1→2)-O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 6 and 4-nitrophenyl O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 14. The 4-nitrophenyl group of 6 was reduced to give title trisaccharide. Bromide 1 was also condensed with methyl 2,3,4-tri-O-benzyl-α-D-manopyranoside 3 in the presence of silver trifluoromethanesulfonate and tetramethylurea to give protected trisaccharide derivative which was deprotected to furnish, methyl O-α-D-mannopyranosyl-(1→2)-O-α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside 10. The identities of all protected and deprotected compounds were supported by 1H and 13C NMR spectral data.  相似文献   

11.
12.
13.
14.
The disaccharides 2-O-Me-α-L-Fucp-(1→2)-β-D-Galp-(1→OAllyl) 12, α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 15, and 2-O-Me-α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 18 have been synthesized. Glycosylation reactions were performed using ethyl 1-thiofucopyranosides as glycosyl donors and N-iodosuccinimide-triflic acid as the activating agent. The O-methylated disaccharides correspond to highly immunogenic O-glycan antigens occurring at the surface of Toxocara canis and Toxocara cati larvae.  相似文献   

15.
A variety of sialyl-α-(2→3)-neolactotetraose (IV3NeuAcnLcOse4 or IV3NeuGcnLcOse4) derivatives (23, 31–37, 58–60) modified at C-2 of the GlcNAc residue have been synthesized. The phthalimido group at C-2 of GlcNAc in 2-(trimethylsilyl)ethyl (3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) was systematically converted to a series of acylamino groups, to give the per-O-benzylated trisaccharide acceptors (6–11). On the other hand, modification of the hydroxyl group at C-2 of the terminal Glc residue in 2-(trimethylsilyl)ethyl (4,6-O-benzylidene-β-d-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (42) gave three different kinds of trisaccharide acceptors containing D-glucose (49), N-acetyl-d-mannosamine (50), and D-mannose (51) instead of the GlcNAc residue. Totally ten trisaccharide acceptors (5–11 and 49–51) were each coupled with sialyl-α-(2→3)-galactose donor 12 to afford the corresponding pentasaccharides (14–21 and 52–54) in good yields, respectively, which were then transformed into the target compounds. Acceptor specificity of the synthetic sialyl-α-(2→3)-neolactotetraose probes for the human α-(1→3)-fucosyltransferases, Fuc-TVII and Fuc-TVI, was examined.  相似文献   

16.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

17.
Condensation of p-nitrophenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside 3 with 2,3,4-tri-O-(chlorosulfonyl)-β-D-xylopyranosyl chloride by the Koenigs-Knorr method afforded the α-linked product in a high yield. Dechlorosulfation with sodium iodide and debenzoylation by the Zemplen method gave crystalline p-nitrophenyl 6-O-(α-D-xylopyranosyl)-β-D-glucopyranoside 7.

Compound 3 was condensed with 2,3,4-tri-O-benzoyl-α-D-xylopyranosyl bromide in the presence of mercury (II) cyanide in acetonitrile, and after debenzoylation, crystalline p-nitrophenyl 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside 10 was obtained.  相似文献   

18.
Abstract

The transmannosylation activity of β-mannosidase from snail and β-galactosidase from Aspergillus oryzae was used for the synthesis of methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1-hexyl, cyclohexyl, and 1-octyl β-D-mannopyranosides (3a-i), respectively. The regioisomeric specificities and wide substrate acceptance of this galactosidase are demonstrated. Thus, 4-nitrophenyl 4-O-(α-D-glucopyranosyl)-β-D-glucopyranoside (6), 4-nitrophenyl 2-O-(β-D-glucopyranosyl)-β-D-glucopyranoside (7), 4-nitrophenyl 2-deoxy-2N-acetyl-6-O-(2-deoxy-2-N-acetyl-β-D-glucopyranosyl)-β-D-glucopyranoside(8),4-nitropheny 13-O-(β-D-mannopyranosyl)-α-D-mannopyranoside (9), and 4-nitrophenyl 4-O-(β-D-mannopyranosyl)-β-D-mannopyranoside (10) were prepared by chemoenzymatic self-transfer reaction.  相似文献   

19.
Solid‐phase synthesis of sialyl Tn [α‐Neu5Ac‐(2→6)‐α‐GalNAc‐(1→O)‐Ser] antigen with Kenner's acylsulfonamide linker is described. The acylsulfonamide bond was found to be stable under glycosylation reactions using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter and basic conditions used for the removal of protecting groups. The solid‐phase reaction was monitored by the inverse gated decoupling 13C NMR technique, which enabled quantitative analysis of the reaction progress. At the end of the synthesis, the sulfamyl group of the linker was activated by treatment with (trimethylsilyl)diazomethane to provide a N‐methyl‐N‐acylsulfonamide. The acyl group was displaced with hydroxide to give the corresponding precursors of sialyl Tn antigen and its anomeric isomers, which were deprotected to afford the target molecules.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号