首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, the effect of the dispersion uniformity of multi-wall carbon nanotubes (MWNTs) on the thermal conductivity of nylon 610/MWNTs nanocomposite was investigated. Compared to raw MWNTs, the carboxylated MWNTs (MWNT-COOH) were well dispersed in aqueous hexamethylenediamine solution and the dispersion stability was further improved by the presence of poly(vinyl alcohol). By means of interfacial polymerization between the aqueous hexamethylenediamine solution containing the MWNTs and a sebacoyl chloride phase, nylon 610/MWNT composites were prepared. It was found that the stable dispersion state of MWNTs in aqueous solutions greatly improved the thermal conductivity of the ultimate nanocomposites. It is noted that the thermal conductivity of nylon 610/MWNT-COOH/PVA nanocomposite was 135% higher than that of nylon 610/raw MWNTs for the same 0.1 wt% content of MWNTs.  相似文献   

2.
The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni2+ and –COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for α, β-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC).  相似文献   

3.
Block copolymers of poly(tert-butyl methyacrylate) (PtBMA) and polystyrene (PSt) were grafted onto multi-walled carbon nanotubes (MWNTs) by the reaction of azide groups at the copolymer chain end with the surface of MWNTs. After hydrolysis, PtBMA block was transformed to polymethyacrylic acid (PMAA) block, and amphiphilic diblock copolymer-modified MWNTs were finally obtained. The modified MWNTs were characterized by XPS, TGA, FTIR, and Raman, and the results showed that the amphiphilic diblock copolymers were grafted onto MWNTs by the covalent bond. The TEM and SEM observation showed that PMAA-b-PSt copolymer modified MWNTs (S2) formed self-assembly tube bundles with the size up to 20 μm in both ethanol and chloroform. However, PtBMA-b-PSt copolymer modified MWNTs (S1) only formed small-size aggregates or dispersed as single-modified MWNTs. The dispersion stability tests showed that S1 had good dispersion stability in several solvents (water, ethanol, acetone, and chloroform) even after 20 days. Due to the big-size tube bundles formed by self-assemble S2, the dispersion stability of S2 in above all solvents decreased, but it was still much better than that of pristine MWNTs.  相似文献   

4.
自制了邻苯二甲酰化壳聚糖、萘甲酰化壳聚糖、羧甲基化壳聚糖等3种壳聚糖衍生物对多壁碳纳米管(MWNTs)进行表面处理,发现邻苯二甲酰化壳聚糖(PhthCS)能有效提高MWNTs在极性6~10范围溶剂中的分散性及稳定性,并考察了PhthCS的分子量及浓度对MWNTs的分散性及稳定性的影响;通过微观形貌和元素分析,发现MWN...  相似文献   

5.
将带不同阴离子(Br-、BF4-、PF6-、H2PO4-)的咪唑离子液体修饰改性的多壁碳纳米管(MWNTs)作为一种全新的载体通过物理吸附法固定化褶皱假丝酵母脂肪酶B(CALB),对其酶学性能进行测试。并通过透射电镜、拉曼光谱、热重分析、X射线光电子能谱对修饰前后的MWNTs进行表征,研究材料表面修饰对酶学性能的影响。研究结果表明,经过离子液体表面修饰后的MWNTs固定化CALB具有更高的比活力,耐受性(高温、高pH值)、热稳定性和重复使用性也得到进一步增强;离子液体中不同的阴离子对修饰MWNTs固定化酶的酶学性能有显著影响,其中以PF6-为阴离子的固定化酶比活力最高,比未修饰的MWNTs提高了5倍。固定化酶的动力学参数分析表明离子液体的引入增强了酶与底物之间的亲和力,从而增强了酶的活性。  相似文献   

6.
The mechanical properties of polymer composites, reinforced with silica-coated multiwall carbon nanotubes (MWNTs), have been studied using the nanoindentation technique. The hardness and the Young's modulus have been found to increase strongly with the increasing content of these nanotubes in the polymer matrix. Similar experiments conducted on thin films containing MWNTs, but without a silica shell, revealed that the presence of these nanotubes does not affect the nanomechanical properties of the composites. While carbon nanotubes (CNTs) have a very high tensile strength due to the nanotube stiffness, composites fabricated with CNTs may exhibit inferior toughness. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt % of the silica-coated MWNTs, display a maximum hardness of 120 +/- 20 MPa, and a Young's modulus of 9 +/- 1 GPa. These are respectively 2 and 3 times higher than those for the polymeric matrix. Here, we describe a method for the silica coating of MWNTs. This is a simple and efficient technique, adaptable to large-scale production, and might lead to new advanced polymer based materials, with very high axial and bending strength.  相似文献   

7.
《Analytical letters》2012,45(9):1785-1799
Abstract

Multiwalled carbon nanotubes (MWNTs) were treated with a mixture of concentrated sulfuric and nitric acid to introduce carboxylic acid groups to the nanotubes. Conducting polymer film was prepared by electrochemical polymerization of neutral red (NR). By using a layer‐by‐layer method, homogeneous and stable MWNTs and poly (neutral red) (PNR) multilayer films were alternately assembled on glassy carbon (GC) electrodes. With the introduction of PNR, the MWNTs/PNR multilayer film system showed synergy between the MWNTs and PNR, with a significant improvement of redox activity due to the excellent electron‐transfer ability of carbon nanotubes (CNTs) and PNR. The electropolymerization is advantageous, providing both prolonged long‐term stability and improved catalytic activity of the resulting modified electrodes. The MWNTs/PNR multilayer film modified glassy carbon electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As compared to MWNTs and PNR‐modified GC electrodes, the magnitude of the amperometric response of the MWNTs/PNR composite‐modified GC electrode is more than three‐fold greater than that of the MWNTs modified GC electrode, and nine‐fold greater than that of the PNR‐modified GC electrode. With the immobilization of glucose oxidase onto the electrode surface using glutaric dialdehyde, a biosensor that responds sensitively to glucose has been constructed. In pH 6.98 phosphate buffer, nearly interference‐free determination of glucose has been realized at ?0.2 V vs. SCE with a linear range from 50 µM to 10 mM and response time <10s. The detection limit was 10 µM glucose (S/N=3).  相似文献   

8.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

9.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Thermal and flammability properties of acrylonitrile-butadiene-styrene copolymer (ABS) with the addition of multi-walled carbon nanotubes (MWNTs) were studied.ABS/MWNTs composites were prepared via melt blending with the MWNTs content varied from 0.2% to 4.0% by mass.Thermogravimetry results showed that the addition of MWNTs accelerated the degradation of ABS during the whole process under air atmosphere,and both onset and maximum degradation temperature were lower than those of pure ABS.The destabilizat...  相似文献   

11.
Multi-walled carbon nanotubes (MWNTs) were modified by oxyfluorination treatment at several different temperatures of 20, 100, 200, and 300 °C. The changes of surface properties of oxyfluorinated MWNTs were investigated using X-ray photoelectron spectroscopy (XPS) method. As a result, it was found that surface fluorine contents were varied with changing an oxyfluorination temperature and showed a maximum value at 100 °C. By changing the treatment temperature in the process of oxyfluorination for carbon supports, the surface characteristics of MWNTs had been modified, resulting that the size and loading content of deposited Pt on the modified carbon supports could be changed. Consequently, Pt deposited MWNTs that were treated at 100 °C (Pt/100-MWNTs) showed the best electroactivity among samples. The enhanced electroactivity was dependent on the higher surface area of electrochemical reaction for metal catalyst, which was related to the particle size and the morphology of the deposited particle catalysts.  相似文献   

12.
The fabrication of poly(2,6-pyridinedicarboxylic acid)/MWNTs modified glass electrode(PPDA/MWNTs/GCE) was proposed and used for individual or simultaneous determination of guanine and adenine.The performances of the PPDA/MWNTs/GCE were characterized with cyclic voltammetry(CV).The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine.Differential pulse voltammetry(DPV) was used to determine the concentration of guanine,adenine.The detection limit(S/N = 3) for guanine and adenine was 0.045μmol/L and 0.05μmol/L,respectively.The electrochemical method for the measurement of guanine and adenine in calf thymus DNA was also developed with this modified electrode and the result was satisfactory.  相似文献   

13.
Carboxyl multi‐wall carbon nanotubes (MWNTs‐COOH) were grafted by diaminopropyl terminated dimethylpolysiloxane (DPD) to the modified MWNTs‐COOH (MWNTs‐DPD). The surface structure and thermal stability of MWNTs‐DPD and MWNTs‐COOH were characterized using Fourier‐transform infrared spectroscopy, X‐ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Then PC/MWNTs‐COOH and PC/MWNTs‐DPD nanocomposites were prepared by the solution method and melt extrusion method. The mechanical properties, transmission electron microscopy (TEM), TGA, limiting oxygen index (LOI), UL‐94 test, and permittivity test were used to evaluate the properties of the composites. The results showed that the MWNTs‐DPD was dispersed well in the PC matrix, and its tensile strength, flexual strength, flexural modulus, and flame retardancy were better than that of PC/MWNTs‐COOH. MWNTs‐DPD can improve the electrical properties of the nanocomposites at the low loading in PC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHC/(gcat·min)), CO conversion (%), and water gas shift rate (WGS)(gCO2/(gcat·h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.  相似文献   

15.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

16.
Melt mixing with a polymer is a novel strategy to modify the surface property of carbon nanotube (CNT) conveniently and efficiently. In melt mixing process, the shearing and thermal issues can make polymer component wrapped around nanotubes via π–π stacking interaction. In this study, polystyrene‐coated multi‐walled carbon nanotubes (MWNTs) was achieved through simple melt mixing of polystyrene with MWNTs. PS and MWNTs were first melt mixed at various melt time and temperatures to find the optimum condition for preparing of PS‐coated MWNTs. Subsequently, the stability of polystyrene interacted with MWNTs was estimated via ultrasonication and thermal gravimetric analysis (TGA). Finally, the physically modified MWNTs were used to enhance polystyrene. An obvious mechanical reinforcement can be achieved, which approves a huge potential of application of these modified MWNTs in practical composite products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
以碳纳米管(MWNTs)修饰的碳糊电极为基底电极,通过电沉积方法制备了六氰合铁酸钴(CoHCF)纳米多孔生物传感平台。考察了MWNTs对CoHCF沉积的影响,优化了CoHCF沉积的各种实验条件(0.5mol/L KCl,1 mmol/L CoCl2和0.9 mmol/L K3Fe(CN)6混合溶液,在循环伏安电压范围0~1.1 V内扫20圈,扫速100 mV/s),借助循环伏安法、交流阻抗法和扫描电镜法对修饰电极进行了表征。由于MWNTs的支撑作用,电沉积得到的CoHCF呈现出多孔结构和良好的电化学稳定性。具有纳米多孔结构的MWNTs-CoHCF薄膜能有效地促进生物小分子在电极上的电子交换,维生素B2在纳米多孔CoHCF/MWNTs上具有优异的氧化还原行为,其测定线性范围为1.2×10-7~2.6×10-7mol/L,检出限为8.9×10-8mol/L。  相似文献   

18.
《Analytical letters》2012,45(5):913-926
Abstract

A new nanocomposite was developed by combination of prussian blue (PB) nanoparticles and multiwalled carbon nanotubes (MWNTs) in the matrix of biopolymer chitosan (CHIT). The PB and MWNTs had a synergistic electrocatalytic effect toward the reduction of hydrogen peroxide. The CHIT/MWNTs/PB nanocomposite‐modified glassy carbon (GC) electrode could amplify the reduction current of hydrogen peroxide by ~35 times compared with that of CHIT/MWNTs/GC electrode and reduce the response time from ~60 s for CHIT/PB/GC to 3 s. Besides, the CHIT/MWNTs/PB nanocomposite‐modified GC electrode could reduce hydrogen peroxide at a much lower applied potential and inhibit the responses of interferents such as ascorbic acid (AA) uric acid (UA) and acetaminophen (AC). With glucose oxidase (GOx) as an enzyme model, a new glucose biosensor was fabricated. The biosensor exhibited excellent sensitivity (the detection limit is down to 2.5 µM), fast response time (less than 5 s), wide linear range (from 4 µM to 2 mM), and good selection.  相似文献   

19.
Water-soluble multi-walled carbon nanotubes (MWNTs) were prepared by the strong adsorption of Congo red (CR) on MWNTs. The CR-functionalized MWNTs (MWNTs–CR) had a high solubility, a high purity and a special property of strong rebundling when dried, capable of forming uniform and compact MWNTs films with a 3D network structure of nanosizes on a glassy carbon electrode (GCE). Compared with GCE, the electrochemical response of estradiol at a MWNTs–CR modified glassy carbon electrode (MWNTs–CR/GCE) was greatly enhanced, which was further amplified by the addition of trace cetyltrimethylammonium bromide (CTAB) in solution, along with the accomplishment of antifouling capacity of the modified electrode. The weak hydrophobic adsorption of surfactants on the hydrophobic and smooth surface of MWNTs was found to be the key for simultaneously improving the sensitivity and antifouling capacity of carbon nanotube-based electrochemical sensors by surfactants.  相似文献   

20.
聚丙烯/多壁碳纳米管复合材料的热性能和流变性能   总被引:5,自引:0,他引:5  
用熔融共混法制备了聚丙烯多壁碳纳米管(PP MWNTs)复合材料,TGA研究表明在氮气气氛下碳纳米管显著增加了聚丙烯基体的热稳定性.3wt%MWNTs可使PP热分解起始温度提高44℃.非等温结晶研究表明MWNTs对PP基体的结晶行为没有明显的影响.流变测试结果表明PP MWNTs复合材料的储能模量G′和损耗模量G″随着MWNTs含量增加逐渐增大.1wt%MWNTs的PP聚合物的零剪切粘度最低,5wt%MWNTs的PP聚合物的零剪切粘度最高,PP和3wt%MWNTs的PP纳米聚合物的零剪切粘度居于二者之间,随着频率的增加,剪切稀化作用越来越明显,呈现出假塑性流体行为.含5wt%MWNTs的PP复合材料的体积和表面电阻率与纯PP相比分别下降了9个和4个数量级,表明少量的MWNTs可以显著改变PP的电学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号