首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dispersions of single-walled carbon nanotubes (SWCNTs) in organic solutions containing poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) were studied by Raman spectroscopy, UV-vis-NIR spectroscopy, and electron microscopy. This polymer interacts with the nanotube resulting in the appearance of a new red-shifted absorption band in the electronic spectrum. This indicates the formation of a charge-transfer complex between MEH-PPV and SWCNTs. Additives of MEH-PPV make it possible to achieve stable suspensions of nanotubes in styrene. A polystyrene/SWCNT/MEH-PPV composite with a high degree of bundle splitting was obtained by polymerization. It was shown that the luminescence intensity of the nanotubes in the Raman spectrum can serve as a indicator for the estimation of the degree of splitting of SWCNT bundles in the composite.  相似文献   

2.
一维(1D)材料与二维(2D)材料的结合可形成独特的混合维度异质结,其在继承2D/2D范德瓦尔斯异质结的独特物性之外,还具有丰富的堆叠构型,为进一步调控异质结的结构及性能提供了新的可操控自由度。p型1D单壁碳纳米管(SWCNT)与n型2D二硫化钼(MoS2)的结合,为调控异质结的能带结构及器件性能提供了丰富的选择。本文直接在高密度、手性窄分布的SWCNT定向阵列及无序薄膜表面原位生长MoS2,制备出高质量1D SWCNT/2D MoS2混合维度异质结。深入分析形核点的表面形貌与结构,提出了“吸附-扩散-吸附”生长机制,用于解释混合维度异质结的生长。利用拉曼光谱分析,证实SWCNT与MoS2间存在显著的电荷转移作用,载流子可在界面处快速传输,为后续基于此类1D/2D异质结的新型电子及光电器件的设计与制备提供了新思路。  相似文献   

3.
Multi-walled and single-walled carbon nanotubes were used as nanoadsorbents for the successful removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised by infrared and Raman spectroscopy, N(2) adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. The general order kinetic model provided the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. For Reactive Blue 4 dye, the equilibrium data (298 to 323 K) were best fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g(-1) for MWCNT and SWCNT, respectively. Simulated dyehouse effluents were used to check the applicability of the proposed nanoadsorbents for effluent treatment (removal of 99.89% and 99.98%, for MWCNT and SWCNT, respectively). The interaction of Reactive Blue 4 textile dye with single-walled carbon nanotubes (SWCNTs) was investigated using first principles calculations based on density functional theory. Results from ab initio calculations indicated that Reactive Blue 4 textile dye could be adsorbed on SWCNT through an electrostatic interaction; these results are in agreement with the experimental predictions.  相似文献   

4.
van der Waals layer-by-layer construction of a carbon nanotube 2D network   总被引:1,自引:0,他引:1  
The acid-treated single-walled carbon nanotubes (SWCNTs) dispersed in water are only kinetically stable with electrostatic double layer repulsions just balancing against van der Waals (VDW) attractions. Introducing any external factor to disturb this balance causes immediate coagulation of SWCNTs. Here, an amine-covered flat substrate was immersed in the dispersion to initiate adsorption of SWCNTs onto the substrate surface. By repeating an adsorption-rinse-dry cycle, it was possible to deposit SWCNT bundles in a layer-by-layer fashion and to develop a 2D network consisting only of SWCNTs that are held by VDW interaction. We show that (1) adsorbed solution-grown aggregates are not relevant for the network connectivity, (2) 2D percolation takes place at very low surface coverage, (3) the electrical resistivity follows a power law against the layering cycles, (4) not only the adsorbed amount but also the added amount per layering cycle increases linearly with the SWCNT concentration, and (5) after the adsorption is initiated by amines, VDW attraction takes over for subsequent adsorption, with the consequence that the newly adsorbed SWCNTs are used to thicken each arm of the network rather than to cover more free surfaces.  相似文献   

5.
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT‐g‐PE) were successfully synthesized via ethylene copolymerization with functionalized single‐walled carbon nanotubes (f‐SWCNTs) catalyzed by rac‐(en)(THInd)2ZrCl2/MAO. Here f‐SWCNTs, in which α‐alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT‐g‐PE were characterized by means of 1H NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field‐emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable‐like structure was formed in the SWCNT‐g‐PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT‐g‐PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f‐SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f‐SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT‐g‐PE were higher because of the chemical bonding between the f‐SWCNTs and PE chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5459–5469, 2007  相似文献   

6.
The transfer of nanoscale properties from single-walled carbon nanotubes (SWCNTs) to macroscopic systems is a topic of intense research. In particular, inorganic composites of SWCNTs and metal oxide semiconductors are being investigated for applications in electronics, energy devices, photocatalysis, and electroanalysis. In this work, a commercial SWCNT material is separated into fractions containing different conformations. The liquid fractions show clear variations in their optical absorbance spectra, indicating differences in the metallic/semiconducting character and the diameter of the SWCNTs. Also, changes in the surface chemistry and the electrical resistance are evidenced in SWCNT solid films. The starting SWCNT sample and the fractions as well are used to prepare hybrid electrodes with titanium dioxide (SWCNT/TiO2). Raman spectroscopy reflects the optoelectronic properties of SWCNTs in the SWCNT/TiO2 electrodes, while the electrochemical behavior is studied by cyclic voltammetry. A selective development of charge transfer characteristics and double-layer behavior is achieved through the suitable choice of SWCNT fractions.  相似文献   

7.

Single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene have been tested as carbon allotropes for the modification of carbon screen-printed electrodes (CSPEs) to simultaneously determine melatonin (MT) and serotonin (5-HT). Two groups of CSPEs, both 4 mm in diameter, were explored: The first includes commercial SWCNT, MWCNT and graphene, the second includes SWCNT, MWCNT, graphene oxide nanoribbons and reduced nanoribbons that were drop casted on the electrodes. The carbon nanomaterials enhanced the electroactive area in the following order: CSPE

Carbon nanomaterials on screen-printed electrodes: smart electrochemistry for fast, simultaneous and reliable detection of serotonin the molecule of happiness and melatonin the molecule of darkness.

  相似文献   

8.
Ternary nanocomposites (NCs) containing copper oxide (CuO)/poly(methyl methacrylate)/various carbon‐based nanofillers have been successfully prepared as thin films by an ex situ method as a selective Hg+2 sensor. The structural, morphological, and electrochemical properties of the NCs were identified by all common characterization tools. The FT‐IR curves of these NCs proved the efficiency of CuO mixed with single‐walled CNTs (CuO/SWCNTs), multi‐walled CNTs (CuO/MWCNTs), or graphene (CuO/G) nanoparticles in the PMMA polymer matrix. The mixed nanofillers significantly improved the properties of the PMMA film. The thermal characteristics of the pure PMMA polymer matrix were highly developed by adding nanofillers in the form of NCs. The maximum composite degradation temperature (CDTmax) values were comparable for all the NCs and were in the range of 345 to 406°C. For fabrication, the CuO‐PMMA‐SWCNT, CuO‐PMMA‐MWCNT, and CuO‐PMMA‐GNCs were coated onto a glassy carbon electrode (GCE) to form a tiny layer with orderly thickness using a conductive 5% Nafion chemical binder. During the electrochemical investigation, it was found that CuO‐PMMA‐SWCNT had the maximum response toward Hg2+ ions compared to the other nanofillers in a buffer medium (phosphate type). To calibrate the Hg2+ ionic sensor, the data were plotted against Hg2+ ion concentration and the proposed sensor showed linearity over a wide range of concentrations (0.1‐0.01 mM), which is called the linear dynamic range (LDR). The analytical parameters, such as sensitivity (1.70 × 102 μAμM‐1 cm?2), detection limit (55.76 ± 2.79 pM), and limit of quantification (185.87 pM) were calculated from the calibration curve. Moreover, it showed good reproducibility, fast response time, good linearity, large LDR, and good stability. The CuO‐PMMA‐SWCNT NC‐modified GCE offers a new route to fabricate novel heavy metal ionic sensors, which might be used in green environment and health development applications.  相似文献   

9.
Pt/single-walled carbon nanotube (SWCNT) composites have been prepared by mixing surfactant-assisted solubilized SWCNTs and Pt carbonyl complexes. Pt nanoparticles that are nearly monodispersed with a diameter of ca. 2.2 nm are formed on the surface of the SWCNTs and broadly dispersed (even at 60 wt.% loading) on individual and/or small bundles. Formation of the composite does not lead to a change in the structure of SWCNTs, and the composite exhibits significantly enhanced electrocatalytic activity for methanol oxidation. The enhancement in catalytic activity may result from the unique 1-D structures of SWCNTs, the uniform dispersion of Pt nanoparticles, and the interactions between the Pt nanoparticles and the SWCNTs. The SWCNT-supported Pt can serve as a high surface area support for fuel cell applications and a co-catalyst for methanol oxidation.  相似文献   

10.
The addition of diazonium salts to single-walled carbon nanotubes (SWCNTs) in aqueous surfactant suspensions quenches the intrinsic near-infrared fluorescence of semiconducting SWCNTs through sidewall chemical reactions. Spectrally resolved fluorescence spectroscopy of mixed SWCNT samples has been used to measure structure-dependent relative reactivities in the initial stages of these reactions. For several 4-substituted benzenediazonium salts, Ar-R (Ar = N 2 (+)-C 6H 4 and R = Cl, NO 2, OMe), reactivities at pH 10 were found to be greatest for SWCNTs having the largest band gaps. The magnitude of this band gap dependence varies according to the R-group of the salt, with R = OMe showing the strongest variation. For R = OH, acidification of the sample to pH 5.5 results in reversal of the structural trend, as smaller band gap SWCNTs show slightly greater reactivities. The derivatization reactions observed here proceed concurrently, although at different rates, for semiconducting and metallic SWCNT species. These results therefore provide insight into the difficulties of separating metallic and semiconducting SWCNTs through selective reaction schemes and underscore the need for fluorescence spectroscopy to be used in assessing semiconducting SWCNT reactions.  相似文献   

11.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

12.
The high rate of electron/hole pair recombination reduces the quantum yield of the processes with TiO(2) and represents its major drawback. Adding a co-adsorbent increases the photocatalytic efficiency of TiO(2). In order to hybridize the photocatalytic activity of TiO(2) with the adsorptivity of carbon nanotube, a composite of multi-walled carbon nanotubes and titanium dioxide (MWCNT/TiO(2)) has been synthesized. The composite was characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared absorption spectroscopy (FTIR), and diffuse reflectance UV-vis spectroscopy. The catalytic activity of this composite material was investigated by application of the composite for the degradation of methyl orange. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO(2). The enhancement in photocatalytic performance of the MWCNT/TiO(2) composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNT acts as a dispersing agent preventing TiO(2) from agglomerating activity during the catalytic process, providing a high catalytically active surface area. This work adds to the global discussion of how CNTs can enhance the efficiency of catalysts.  相似文献   

13.
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vana-dium oxide catalysts.The real time reaction status of soot combustion over these catalysts was de-tected by in-situ UV-Raman spectroscopy.The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature.However,no obvious phase transformation process is observed for ZrO2 support.The structures of supported va-nadium oxides also depend on the V loading.The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4(4 is the number of V atoms per 100 support metal ions).Interestingly,this loading ratio(V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports(TiO2 and ZrO2).The formation of surface oxygen com-plexes(SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion.The presence of NO in the reaction gas stream can promote the pro-duction of SOC.  相似文献   

14.
Enhancement of intercalation properties of V2O5 film by TiO2 addition   总被引:1,自引:0,他引:1  
Although it is well-known that TiO2 incorporation can greatly improve the cyclic stability of V2O5, the influences of TiO2 addition on the Li+ intercalation properties of V2O5 remain an issue of debate in literature. In this paper, we report on a systematic investigation of the preparation and intercalation properties of V2O5-TiO2 mixture films. The present work demonstrates that high Li+ intercalation rates and capacity in V2O5 films are achievable with TiO2 addition. For example, the addition of 20 mol % Ti into V2O5 polycrystalline demonstrated an approximated 100% improvement in Li+ intercalation performance as compared to single V2O5 electrodes. Such enhancement in intercalation properties of V2O5 films with TiO2 addition was attributed to changes in microstructure, crystallinity, and also a possible lattice structure and interaction force between adjacent layers in V2O5.  相似文献   

15.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   

16.
以聚苯乙烯(PS)胶球为模板, 通过一步法结合煅烧后处理制备了空心球复合材料In2O3/ZrO2-TiO2. 采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 紫外-可见漫反射吸收光谱(UV-Vis DRS)和氮气吸附-脱附等测试手段对复合材料的结构、 组成和形貌进行了表征. 结果表明, In2O3/ZrO2-TiO2复合材料的晶型结构以锐钛矿型TiO2为主, 同时存在少量含有Ti—O—Zr键的混合氧化物. 该复合材料经聚苯乙烯模板处理后呈现空心球状结构, 球壁由纳米粒子堆积而成. In2O3/ZrO2-TiO2空心球复合材料的比表面积较大(66.92 m2/g), 且In2O3与ZrO2-TiO2复合后光吸收发生了红移. 对该复合材料光解水制氢性能的研究结果表明, 空心球状In2O3/ZrO2-TiO2具有较好的产氢效果(56.7 μmol/g, 8 h), 明显高于P25、 ZrO2、 空心球状ZrO2-TiO2及粉末状In2O3/ZrO2-TiO2.  相似文献   

17.
商业选择性催化还原(SCR)催化剂成分主要有 V2O5, WO3和 TiO2,但适用温度窗口较窄(300?400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯 TiO2和 ZrO2载体, TiO2-ZrO2具有较高的热稳定性以及较多的酸位,虽然有关 TiO2-ZrO2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对 NH3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同 NH3-SCR脱硝催化剂的起活温度不同.同时, NH3和 NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究 NH3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的 TiO2-ZrO2固溶体,并分步浸渍不同质量比的 WO3和1%V2O5,最终得到一系列1%V2O5-x%WO3/TiO2-ZrO2.然后通过 X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了 WO3和 ZrO2对催化性能的影响以及 V2O5-WO3/TiO2-ZrO2催化剂的反应机理. N2物理吸附结果表明, WO3的添加使得催化剂孔结构的热稳定性有所提高,同时随着 WO3含量增加催化剂的比表面积逐渐减小,但仍高于 V2O5/TiO2-ZrO2催化剂; ZrO2对催化剂比表面积增大效果比较明显.结合 XRD结果表明, WO3能促进金属氧化物在载体上的分散;相比于 V2O5-WO3/TiO2催化剂, ZrO2有利于活性组分的分散负载.比较系列 V2O5-x%WO3/TiO2-ZrO2的氨吸附情况,发现 WO3的添加增加了 Br?nsted酸的稳定性,其中以9%WO3的效果最显著.催化剂氨吸附中间物种(–NH2)的发现,证实了 WO3添加促进了 NH3的活化,有利于脱硝反应的进行. SCR反应结果显示, V2O5-9%WO3/TiO2-ZrO2催化剂在300–450oC时 NOx转化效率最优,并发现 O2的存在促进了 NOx的转化.采用in situ DRIFTS研究了 V2O5-x%WO3/TiO2-ZrO2催化剂脱硝机理,300和350oC时 NH3, NO, NO + O2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为 Lewis酸中心, Br?nsted酸中心的 NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与 NH3相比, NO只能以 NO2的形式弱吸附在催化剂表面.因此,该催化剂遵循 Eley-Ridel脱硝机理.而 V2O5-9%WO3/TiO2-ZrO2催化剂具有相对较高的脱硝效率,因此用来着重研究 NH3-SCR机理.在 NH3吸附过程中, NH3(1204,1602,3156,3264,3347 cm?1)和活性中产物 NH2(1550 cm?1)在催化剂表面的吸附(恒温300oC)是稳定的;随后通入 NO + O2时, NH3吸附过程中的所有吸收峰(包括 NH2)均逐渐减小(NH3吸附态与 NO结合后分解为 N2和 H2O),同时出现 H2O的振动峰,这证明了 V2O5-x%WO3/TiO2-ZrO2催化剂的脱硝反应过程.各类气体吸附情况表明, NO在商业催化剂的吸附状态与 V2O5-x%WO3/TiO2-ZrO2催化剂相同;但 NH3吸附结果表明, Br?nsted酸中心和 Lewis酸中心都是催化剂的活性中心; NO + O2的通入使得催化剂表面的 NH3和 NH4+都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的 NOx脱除路径.通过in situ DRIFTS比较 O2的存在对脱硝反应产生的不同影响来确定 O2的作用.两类催化剂上 O2均参与了 H2O的形成,促进了催化反应的完成;当 O2不存在时, NO的还原受到了极大地抑制,同时也未出现 H2O;两者的脱硝效率大大降低. H2-TPR和 NH3-TPR结果进一步证实 O2的作用主要是氧化 NO及参与催化过程 H2O的形成.  相似文献   

18.
制备方法对负载型纳米ZrO2/Al2O3复合载体性能的影响   总被引:4,自引:0,他引:4  
李凝  罗来涛 《催化学报》2007,28(9):773-778
采用浸渍-沉淀法制备了负载型纳米ZrO2/Al2O3复合载体.采用X射线衍射、N2物理吸附、差示扫描量热(DSC)和程序升温脱附等技术考察了浸渍方式和干燥方法对复合载体的表面性能、热稳定性和晶相结构的影响.结果表明,ZrO2/Al2O3复合载体中没有生成ZrO2-Al2O3复合氧化物或固溶体,纳米ZrO2仅负载在Al2O3的表面.微波干燥法制备的ZrO2/Al2O3复合载体的比表面积(158.7 m2/g)较大,最可几孔径为19.4 nm,ZrO2的粒度为4.2 nm,晶相结构为四方相ZrO2.微波诱导作用使ZrO2/Al2O3复合载体表面产生了新的酸碱中心,微波干燥法制备的ZrO2/Al2O3复合载体具有较强的热稳定性,在873~1 073 K范围内DSC曲线没有出现吸热峰,而其它干燥方法制备的复合载体在903~1 023 K范围内出现了较明显的吸热峰,表明复合载体表面的部分四方相ZrO2转变为单斜相ZrO2(m-ZrO2).对超声波处理过的复合载体进行微波干燥能进一步提高纳米ZrO2与Al2O3之间的相互作用,纳米粒子的粒度(3.4 nm)更小,分布更均匀,但没有改变ZrO2的晶相结构.  相似文献   

19.
Two approaches to producing gradients of vertically aligned single-walled carbon nanotubes (SWCNTs) on silicon surfaces by chemical grafting are presented here. The first approach involves the use of a porous silicon (pSi) substrate featuring a pore size gradient, which is functionalized with 3-aminopropyltriethoxysilane (APTES). Carboxylated SWCNTs are then immobilized on the topography gradient via carbodiimide coupling. Our results show that as the pSi pore size and porosity increase across the substrate the SWCNT coverage decreases concurrently. In contrast, the second gradient is an amine-functionality gradient produced by means of vapor-phase diffusion of APTES from a reservoir onto a silicon wafer where APTES attachment changes as a function of distance from the APTES reservoir. Carboxylated SWCNTs are then immobilized via carbodiimide coupling to the amine-terminated silicon gradient. Our observations confirm that with decreasing APTES density on the surface the coverage of the attached SWCNTs also decreases. These gradient platforms pave the way for the time-efficient optimization of SWCNT coverage for applications ranging from field emission to water filtration to drug delivery.  相似文献   

20.
The addition of SH and OH groups to single‐wall carbon nanotubes (SWCNTs) was investigated employing first principles calculations. In the case of the semiconducting (10, 0) SWCNT the SWCNT‐SH binding energy is weak, 2–4 kcal/mol. However, for the metallic (5, 5) SWCNT it is larger, 7–9 kcal/mol. Thus metallic SWCNTs seem to be more reactive to SH than the semiconducting ones. Indeed, the (6, 6) SWCNT is more reactive to SH than the (10, 0) SWCNT, by 2–3 kcal/mol, something that can be explained only considering the electronic structure of the tube, because the (6, 6) has a larger diameter. The binding energies are larger for the addition of the OH group, 25 and 30 kcal/mol for the (10, 0) and (5, 5) SWCNTs, respectively. When a single OH or SH group is attached to the metallic SWCNTs, we observe important changes in the DOS at the Fermi level. However, when multiple SH groups are attached, the changes in the electronic and magnetic properties depend on the position of the SH groups. The small binding energy found for the SH addition indicates that the successful functionalization of SWCNTs with SH, SCH3, and S(CH2)nSH groups is mostly due to the presence of defects created after acid treatment and to a minor extent by the metallic tubes present in the samples. Perfect semiconducting SWCNTs showed very low reactivity against the SH group. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号