共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng Xiang Yue-Bin Shan Tao Li Chang-Cang Huang Xi-He Huang Mei-Jin Lin 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(1):38-45
Naphthalenediimides, an attractive class of electron‐deficient organic dyes with rich redox and photoredox properties, have been investigated extensively as building blocks for coordination networks or metal–organic frameworks in recent decades. However, most of the available work has focused on d‐block metal cations rather than f‐block lanthanide ions, whose complexes exhibit a large variability in coordination numbers. In this article, four coordination polymers composed of naphthalenediimides and lanthanide cations, namely catena‐poly[[[tris(nitrato‐κ2O,O′)lanthanide]‐bis{μ‐N,N′‐bis[(1‐oxidopyridin‐1‐ium‐3‐yl)methyl]‐1,8:4,5‐naphthalenetetracarboxdiimide‐κ2O:O′}‐[tris(nitrato‐κ2O,O′)lanthanide]‐μ‐N,N′‐bis[(1‐oxidopyridin‐1‐ium‐3‐yl)methyl]‐1,8:4,5‐naphthalenetetracarboxdiimide‐κ2O:O′] methanol disolvate], {[Ln(C26H16N4O4)1.5(NO3)3]·CH3OH}n, with Ln = Eu, 1 , Gd, 2 , Dy, 3 , and Er, 4 , have been successfully synthesized under hydrothermal conditions. Single‐crystal X‐ray diffraction analyses revealed that the four compounds are isomorphic and that each asymmetric unit contains one nine‐coordinated Ln centre, one and a half diimide ligands, three nitrate anions and one uncoordinated methanol molecule. In addition, each metal centre is surrounded by nine O atoms in a distorted tricapped trigonal–prismatic geometry. Two centres are bridged by two cis ligands to form a ring, which is further bridged by trans ligands to generate one‐dimensional chains. Neighbouring chains are stacked via π–π interactions between pyridine rings to give a two‐dimensional structure, which is stabilized by π–π interactions between naphthalene rings, forming the final three‐dimensional supermolecular network. Solid‐state optical diffuse‐reflectance spectral studies indicate that compound 4 is a potential wide band gap semiconductor. 相似文献
2.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(10):1116-1122
The synthesis and characterization of two dinuclear complexes, namely fac‐hexacarbonyl‐1κ3C,2κ3C‐(pyridine‐1κN)[μ‐2,2′‐sulfanediyldi(ethanethiolato)‐1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], ( 1 ), and tetraethylammonium fac‐tris(μ‐2‐methoxybenzenethiolato‐κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], ( 2 ), together with two mononuclear complexes, namely (2,2′‐bithiophene‐5‐carboxylic acid‐κ2S,S′)bromidotricarbonylrhenium(I), ( 3 ), and bromidotricarbonyl(methyl benzo[b]thiophene‐2‐carboxylate‐κ2O,S)rhenium(I), ( 4 ), are reported. Crystals of ( 1 ) and ( 2 ) were characterized by X‐ray diffraction. The crystal structure of ( 1 ) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReI metal centres, while the geometry of the second ReI metal centre is completed by a pyridine ligand. The structure of ( 2 ) is characterized by three S‐atom bridges and an Re…Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for ( 1 ) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex ( 1 ) is stabilized by six intermolecular hydrogen‐bond interactions and an O…O interaction, while ( 2 ) is stabilized by two intermolecular hydrogen‐bond interactions and two O…π interactions. 相似文献
3.
Lian Zhou Pei-Dong Shi Xiao-Kun Guo Xiu-Cun Feng Lin-Lin Wang Jun Zhang 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(9):1280-1285
By employing the semi‐rigid multidentate carboxylic acid ligand 4,4′,4′′‐{[(2,4,6‐trimethylbenzene‐1,3,5‐triyl)tris(methylene)]tris(oxy)}tribenzoic acid (denoted H3L), a new lanthanum coordination polymer, namely poly[[bis(dimethylformamide)(μ6‐4,4′,4′′‐{[(2,4,6‐trimethylbenzene‐1,3,5‐triyl)tris(methylene)]tris(oxy)}tribenzoato)lanthanum(III)] dimethylformamide tetrasolvate 0.25‐hydrate], {[La(C33H27O9)(C3H7NO)2]·4C3H7NO·0.25H2O}n or {[La(L)(DMF)2]·4(DMF)·0.25(H2O)}n (DMF is dimethylformamide) ( 1 ), was prepared and characterized by single‐crystal X‐ray diffraction, elemental analysis, thermogravimetric analysis, IR spectroscopy and photoluminescence studies. The asymmetric unit contains one LaIII cation, one anionic L3? ligand, two coordinated DMF molecules, four free DMF molecules and one‐quarter of a free water molecule. Compound 1 possesses (3,6)‐connected two‐dimensional kgd topology sheets consisting of secondary building units of La2 clusters and L3? ligands, which further stack into three‐dimensional supramolecular networks through π–π interactions. Compound 1 exhibits a photoluminescence emission at room temperature, with a peak at 410 nm, owing to a ligand‐centred excited state. 相似文献
4.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(2):139-145
Three new manganese(II), lead(II) and cadmium(II) coordination complexes have been prepared by reaction of N‐(1H‐tetrazol‐5‐yl)cinnamamide (HNTCA) with divalent metal salts (MnCl2, PbCl2 and CdCl2) in a mixed‐solvent system, affording mononuclear to trinuclear structures namely, bis(methanol‐κO)bis[5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ2N1,O]manganese(II), [Mn(C10H8N5O)2(CH3OH)2], (1), bis[μ‐5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido]‐κ3N1,O:N2;κ3N2:N1,O‐bis{aqua[5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ2N1,O]lead(II)}, [Pb2(C10H8N5O)4(H2O)2], (2), and hexakis[μ2‐5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ3N1,O:N2]tricadmium(II), [Cd3(C10H8N5O)6], (3). The structures of these three compounds reveal that the nature of the metal ions and the side groups of the organic building blocks have a significant effect on the structures of the coordination compounds formed. Intermolecular hydrogen bonds link the molecules into two‐dimensional [complex (1)] and three‐dimensional hydrogen‐bonded networks. Complexes (2) and (3) show significant fluorescence, while complex (1) displays no fluorescence. 相似文献
5.
C.W. Liu Bijay Sarkar Ya-Wen Lin Ju-Chun Wang 《Journal of organometallic chemistry》2009,694(14):2134-2810
The effect of the length of alkane spacer in diphosphines on the nuclearity of Ag(I) complexes containing dialkyl dithiophosphates (dtp) ligands has been investigated. 1,1-Bis(diphenylphosphino)methane (dppm) yielded tetranuclear [Ag4(dppm)2{S2P(OEt)2}4] (1), [Ag4(dppm)2{S2P(OiPr)2}4] (3), trinuclear [Ag3(dppm)3{S2P(OEt)2}2](PF6) (2), and a dinuclear [Ag2(dppm)2{S2P(OiPr)}](PF6) (4). The increase in spacer length from one methylene in dppm to two in 1,2-bis(diphenylphosphino)ethane (dppe) resulted in the formation of polymeric, [Ag(dppe){S2P(OR)2}]∞ (R = Et, 5a and 5a′; iPr, 5b), and [Ag4(μ3-Cl)(dppe)1.5{S2P(OR)2}3]∞ (R = Et, 6a; iPr, 6b). Compounds 5a, 5b, 6a and 6b were reported earlier [C.W. Liu, B.-J. Liaw, L.-S. Liou, J.-C. Wang, Chem. Commun. (2005) 1983]. Further increase in the chain length to four methylene units in 1,4-bis(diphenylphosphino)butane (dppb) yielded dppb-bridged polymers, [Ag(dppb){S2P(OEt)2}]∞ (7) and [Ag2(dppb){S2P(OEt)2}2]∞ (8). In all the polynuclear compounds, diphosphines acted as P,P′-bridging ligands, while the dtp ligands (S,S′-donors) adopted varieties of coordination patterns: S,S′-chelating (5, 7), S,S′-bridging (4), bimetallic-triconnective, μ2:η2,η1 (1, 3, 8), bimetallic-diconnective, μ2:η2 (2, 3) and trimetallic-triconnective, μ3:η2,η1 (6). Some of the complexes exhibit argentophilicity with Ag?Ag distances in the range, 2.918-3.360 Å. Concomitant bridging of two silver atoms either by dppm and dtp ligands (1, 3 and 4) or two dtp ligands (8) lead to close silver-silver contacts. The diphosphines (dppe and dppb) with longer spacer appeared to favor 1D or 2D polymers due to the flexibility of the spacer within the diphosphine unit by adopting anti conformation as opposed to syn conformation of the dppm linker is revealed in complexes. 相似文献
6.
A series of novel quasi‐scorpionate CNC donor ligands, MeC(2‐C5H4N){CH2(imidazole‐R)} (R = methyl, n‐butyl, n‐propenyl), in which a chelating bis(NHC) core is supplemented by a hemi‐labile pyridyl donor, were prepared. The coordination chemistry of these ligands was investigated with silver, palladium, rhodium and iridium. The single crystal X‐ray structures of [Rh(NC2Me)(COD)]Cl 8a and [Ir(NC2Pr)(COD)]Br 9b were determined. The catalytic potential of the rhodium and iridium complexes was assessed in the transfer hydrogenation of ketones; the iridium complexes, which show superior performance, form very effective and stable catalysts. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
7.
Zi-Yi Fang Li Zhang Jian-Ping Ma Long Zhao Shi-Ling Wang Nan-Hua Xie Yi-Qin Liu Xiao-Ying Guo Jie Qin 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(12):1658-1665
Because of its versatile coordination modes and strong coordination ability, the mercaptoacetic acid substituted 1,2,4‐triazole 2‐{[5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetic acid ( H2L ) was synthesized and characterized. Treatment of H2L with cobalt and nickel acetate afforded the dinuclear complexes {μ‐3‐[(carboxylatomethyl)sulfanyl]‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐ido‐κ2N1,N5:N2,O}bis[aqua(methanol‐κO)cobalt(II)] methanol disolvate, [Co2(C9H6N4O2S)2(CH3OH)2(H2O)2]·2CH3OH ( 1 ), and {μ‐3‐[(carboxylatomethyl)sulfanyl]‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐ido‐κ2N1,N5:N2,O}bis[diaquanickel(II)] methanol disolvate dihydrate, [Ni2(C9H6N4O2S)2(H2O)4]·2CH3OH·2H2O ( 2 ), respectively. Complex 1 crystallized in the monoclinic space group P21/c, while 2 crystallized in the tetragonal space group I41/a. Single‐crystal X‐ray diffraction studies revealed that H2L is doubly deprotonated and acts as a tetradentate bridging ligand in complexes 1 and 2 . For both of the obtained complexes, extensive hydrogen‐bond interactions contribute to the formation of their three‐dimensional supermolecular structures. Hirshfeld surface analysis was used to illustrate the intermolecular interactions. Additionally, the urease inhibitory activities of 1 , 2 and H2L were investigated against jack bean urease, where the two complexes revealed strong urease inhibition activities. 相似文献
8.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(3):332-341
Multifunctional 2‐amino‐5‐sulfobenzoic acid (H2afsb) can exhibit a variety of roles during the construction of supramolecular coordination polymers. The pendant carboxylic acid, sulfonic acid and amino groups could not only play a role in directing bonding but could also have the potential to act as hydrogen‐bond donors and acceptors, resulting in extended high‐dimensional supramolecular networks. Two new CuII coordination compounds, namely catena‐poly[[[diaquacopper(II)]‐μ‐1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane‐κ2N4:N4′] bis(3‐amino‐4‐carboxybenzenesulfonate) dihydrate], {[Cu(C10H16N6)2(H2O)2](C7H6NO5S)2·2H2O}n or {[Cu(bth)2(H2O)2](Hafsb)2·2H2O}n, (1), and bis(μ‐2‐amino‐5‐sulfonatobenzoato‐κ2O1:O1′)bis{μ‐1,2‐bis[(1H‐imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}bis[aquacopper(II)] trihydrate, [Cu2(C7H5NO5S)2(C14H14N4)2(H2O)2]·3H2O or [Cu2(afsb)2(obix)2(H2O)2]·3H2O, (2), have been obtained through the assembly between H2afsb and the CuII ion in the presence of the flexible N‐donor ligands 1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane (bth) and 1,2‐bis[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzene (obix), respectively. Compound (1) consists of a cationic coordination polymeric chain and 3‐amino‐4‐carboxybenzenesulfonate (Hafsb−) anions. Compound (2) exhibits an asymmetric dinuclear structure. There are hydrogen‐bonded networks within the lattices of (1) and (2). Interestingly, both (1) and (2) exhibit reversible dehydration–rehydration behaviour. 相似文献
9.
10.
《应用有机金属化学》2017,31(11)
Three Pd(II) complexes of some hemilabile ligands, aminothiazole‐based phosphines, were synthesized to investigate the catalytic activity of them in Heck cross‐coupling reactions. The crystal structures of complexes PdCl2[(Ph2P)HN(C3H2NS)] ( C 1 ) and PdCl2[(Ph2P)HN(C7H4NS)] ( C 3 ) were determined using X‐ray crystallography, which reveals that the ligand coordinates in a chelating mode through P and N (endocyclic) atoms in square planar geometry. Experimental and theoretical studies (atoms in molecules and natural bond orbital analyses) show that the Pd(II) interacts more strongly with the P atom than the N atom in the chelated ligand, N^P. This trait can promote catalytic activity of the complexes in comparison with our previous work in which chelated ligands with two phosphorus atoms, P^P, were used. The influence of non‐covalent intermolecular interactions on the assembly of the solid‐state structures is also discussed in terms of geometrical analysis. The prepared complexes turn out to be useful pre‐catalysts in Heck cross‐coupling reactions owing to the coordinative flexibility of the hemilabile ligands. The protocol affords the corresponding products in greater yield than the same reactions with bis(phosphino)amine Pd(II) complexes, as the catalysts in our previous work. 相似文献
11.
In the two‐dimensional (2D) homochiral structure of [cadmium(II) bis(S‐(?)‐lactate)]n, the lactate ligand adopts a µ3‐bridging mode to connect two cadmium atoms, leading to the formation of a 2D network. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
12.
Chemistry of N,S‐Heterocyclic Carbene and Metallaboratrane Complexes: A New η3‐BCC‐Borataallyl Complex 下载免费PDF全文
Dr. Dipak Kumar Roy Anangsha De Subhankar Panda Dr. Babu Varghese Prof. Sundargopal Ghosh 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(39):13732-13738
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis. 相似文献
13.
Qi-Meige Hasi Yan Fan Chen Hou Xiao-Qiang Yao Jia-Cheng Liu 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(10):724-729
In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. N‐Donor ligands with diverse coordination modes and conformations have been employed to assemble metal–organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds and are thus good candidates for the construction of supramolecular architectures. Two new transition metal complexes, namely poly[diaqua(μ4‐1,4‐bis{[1‐(pyridin‐3‐ylmethyl)‐1H‐benz[d]imidazol‐2‐yl]methoxy}benzene)bis(μ2‐isophthalato)dicobalt(II)], [Co(C8H4O4)(C34H28N6O2)0.5(H2O)]n, (1), and poly[diaqua(μ4‐1,4‐bis{[1‐(pyridin‐3‐ylmethyl)‐1H‐benz[d]imidazol‐2‐yl]methoxy}benzene)bis(μ2‐isophthalato)dicadmium(II)], [Cd(C8H4O4)(C34H28N6O2)0.5(H2O)]n, have been constructed using a symmetric N‐donor ligand and a carboxylate ligand under hydrothermal conditions. X‐ray crystallographic studies reveal that complexes (1) and (2) are isostructural, both of them exhibiting three‐dimensional supramolecular architectures built by hydrogen bonds in which the coordinated water molecules serve as donors, while the O atoms of the carboxylate groups act as acceptors. Furthermore, (1) and (2) have been characterized by elemental, IR spectroscopic, powder X‐ray diffraction (PXRD) and thermogravimetric analyses. The UV–Vis absorption spectrum of complex (1) has also been investigated. 相似文献
14.
Edward D. Cross Kristen L. MacDonald Robert McDonald Matthias Bierenstiel 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(1):23-27
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline. 相似文献
15.
Kamil Twarg Magorzata Hoyska Andrzej Kochel 《Acta Crystallographica. Section C, Structural Chemistry》2020,76(5):500-506
Employment of the organic 2‐(pyridin‐4‐yl)quinoline‐4‐carboxylic acid ligand with extended coordination capabilities leads to the formation of the one‐dimensional copper(II) coordination polymer catena‐poly[[diaquacopper(II)]‐bis[μ‐2‐(pyridin‐4‐yl)quinoline‐4‐carboxylato]‐κ2N2:O;κ2O:N], {[Cu(C15H9N2O2)2(H2O)2]·2H2O}n, under hydrothermal conditions. The ligand, isolated as its hydrochloride salt, namely, 4‐(4‐carboxyquinolin‐2‐yl)pyridinium chloride monohydrate, C15H11N2O2+·Cl?·H2O, reveals a pseudosymmetry element (translation a/2) in its crystal structure. The additional pyridyl N atom, in comparison with the previously reported analogues with an arene ring instead of the pyridyl ring in the present ligand molecule, promotes the formation of a one‐dimensional coordination polymer, rather than discrete molecules. This polymer shows photoluminescent properties with bathochromic/hypsochromic shifts of the ligand absorption bands, leading to a single band at 479 nm. The CuII ions are involved in weak antiferromagnetic interactions within dimeric units, as evidenced by SQUID magnetometry. 相似文献
16.
Qiu‐Ying Huang Yi Yang Xiang‐Ru Meng 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(8):701-705
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state. 相似文献
17.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(7):541-545
One of the most interesting phenomena in coordination polymers (CPs) is the co‐existence of different interlaced motifs. However, CPs having two different interlaced motifs at the same time are still rare. Colourless block‐shaped crystals of the two‐dimensional polymer poly[[aqua(μ2‐naphthalene‐2,6‐dicarboxylato){μ2‐4,4′‐[oxybis(4,1‐phenylene)]dipyridine}cadmium(II)] monohydrate], {[Cd(C12H6O4)(C22H16N2O)(H2O)]·H2O}n , (I), was synthesized under hydrothermal conditions by the self‐assembly of 4,4′‐[oxybis(4,1‐phenylene)]dipyridine (OPY) with CdII in the presence of naphthalene‐2,6‐dicarboxylic acid (H2ndc). Each CdII ion is six‐coordinated by two N atoms from the pyridine rings of two OPY ligands and by four O atoms, three of which are from two ndc2− ligands and one of which is from a water molecule. In (I), every two identical two‐dimensional (2D) 63 layers are interpenetrated in a parallel fashion, resulting in an interesting 2D→2D framework with both polyrotaxane and polycatenane characteristics. The extension of these sheets into a three‐dimensional supramolecular net is via O—H…O hydrogen bonds. The solid‐state photoluminescence properties of (I) are also discussed. 相似文献
18.
Gamer MT Rastätter M Roesky PW Steffens A Glanz M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(10):3165-3172
Yttrium and lanthanide complexes with different P,N ligands in the coordination sphere have been synthesized. First the chloride complexes [{CH(PPh2NSiMe3)2}Ln{(Ph2P)2N}Cl] (Ln = Y (1 a), La (1 b), Nd (1 c), Yb (1 d)) having the bulky [CH(PPh2NSiMe3)2]- and the flexible [(Ph2P)2N]- ligands in the same molecule were prepared by three different synthetic pathways. Compounds 1 a-d can be obtained by reaction of [{[CH(PPh2NSiMe3)2]LnCl2}2] with [K(thf)nN(PPh2)2] (n = 1.25, 1.5) or by treatment of [{(Ph2P)2N}LnCl2(thf)3] with K[CH(PPh2NSiMe3)2]. Furthermore, a one-pot reaction of K[CH(PPh2NSiMe3)2] with LnCl3 and [K(thf)nN(PPh2)2] leads to the same products. Single-crystal X-ray structures of 1 a-d show that the conformation of the six-membered metallacycle (N1-P1-C1-P2-N2-Ln) which is formed by chelation of the [CH(PPh2NSiMe3)2]- ligand to the lanthanide atom is influenced by the ionic radius of the central metal atom. In solution dynamic behavior of the [(Ph2P)2N]- ligand is observed, which is caused by rapid exchange of the two different phosphorus atoms. Further reaction of 1 b with KNPh2 resulted in [{(Me3SiNPPh2)2CH}La{N(PPh2)2}(NPh2)] (2). Compounds 1 a-d and 2 are active in the ring-opening polymerization of epsilon-caprolactone and the polymerization of methyl methacrylate. In some cases high molecular weight polymers with good conversions and narrow polydispersities were obtained. In both polymerizations the catalytic activity depends on the ionic radius of the metal center. 相似文献
19.
Condensation reactions of 1,1′‐diacetylferrocene with ethanolamine were studied. The obtained compounds were further investigated for their ligation and biological properties with Co(II), Cu(II), Ni(II) and Zn(II) metal ions. The synthesized compounds were characterized by their physical, spectral and analytical properties and screened for their antibacterial properties against pathogenic bacterial strains, e.g. Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar‐well diffusion method. All the compounds have shown good antibacterial and antifungal activity, which increased on coordination with the metal ions, thus introducing a potential class of organometallic‐based antibacterial and antifungal agents. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
20.
Xiaoting Zhai Haojie Yu Li Wang Zheng Deng Zain‐ul Abdin Rongbai Tong Xianpeng Yang Yongsheng Chen Muhammad Saleem 《应用有机金属化学》2016,30(2):62-72
Aromatic azobenzene derivatives are outstanding organic photochromic compounds that possess unique photochemical properties. These compounds are widely used in research and development for various applications, especially in information storage, owing to their ability to isomerize between cis (Z) and trans (E) forms under the influence of light of different wavelengths. On account of these advantages, many efforts have been made to generalize the use of azobenzene derivatives. Furthermore, ferrocene‐based polymers and derivatives are promising candidates for functional materials due to their unique redox properties. By interlinking ferrocene with azobenzene, novel functional materials can be obtained that will integrate the excellent properties of both and will provide new applications in various fields including information storage, ion recognition, molecular devices, etc. This article provides an overview of the synthesis, properties and applications of novel ferrocene‐based polymers and derivatives containing azobenzene units. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献