首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer cells produce elevated levels of reactive oxygen species, which has been used to design cancer specific prodrugs. Their activation relies on at least a bimolecular process, in which a prodrug reacts with ROS. However, at low micromolar concentrations of the prodrugs and ROS, the activation is usually inefficient. Herein, we propose and validate a potentially general approach for solving this intrinsic problem of ROS‐dependent prodrugs. In particular, known prodrug 4‐(N ‐ferrocenyl‐N ‐benzylaminocarbonyloxymethyl)phenylboronic acid pinacol ester was converted into its lysosome‐specific analogue. Since lysosomes contain a higher concentration of active ROS than the cytoplasm, activation of the prodrug was facilitated with respect to the parent compound. Moreover, it was found to exhibit high anticancer activity in a variety of cancer cell lines (IC50=3.5–7.2 μm ) and in vivo (40 mg kg−1, NK/Ly murine model) but remained weakly toxic towards non‐malignant cells (IC50=15–30 μm ).  相似文献   

3.
Oxidative stress induced by reactive oxygen species (ROS) is one of the critical factors that involves in the pathogenesis and progression of many diseases. However, lack of proper techniques to scavenge ROS depending on their cellular localization limits a thorough understanding of the pathological effects of ROS. Here, we demonstrate the selective scavenging of mitochondrial, intracellular, and extracellular ROS using three different types of ceria nanoparticles (NPs), and its application to treat Parkinson's disease (PD). Our data show that scavenging intracellular or mitochondrial ROS inhibits the microglial activation and lipid peroxidation, while protecting the tyrosine hydroxylase (TH) in the striata of PD model mice. These results indicate the essential roles of intracellular and mitochondrial ROS in the progression of PD. We anticipate that our ceria NP systems will serve as a useful tool for elucidating the functions of various ROS in diseases.  相似文献   

4.
Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS‐producing hybrid nanoparticle‐based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO2 nanoparticle afforded TiO2‐N3. Upon exposure of TiO2‐N3 to light, the N3 injected electrons into TiO2 to produce three‐ and four‐fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO2 at 160 mmHg. TiO2‐N3 maintained three‐fold higher hydroxyl radicals than TiO2 under hypoxic conditions via N3‐facilitated electron–hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content.  相似文献   

5.
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.  相似文献   

6.
7.
The overproduction of HOCl is highly correlated with diseases such as atherosclerosis, rheumatoid arthritis, and cancer. Whilst acting as a marker of these diseases, HOCl might also be used as an activator of prodrugs or drug delivery systems for the treatment of the corresponding disease. In this work, a new platform of HOCl probes has been developed that integrates detection, imaging, and therapeutic functions. The probes can detect HOCl, using both NIR emission and the naked eye in vitro, with high sensitivity and selectivity at ultralow concentrations (the detection limit is at the nanomolar level). Basal levels of HOCl can be imaged in HL‐60 cells without special stimulation. Moreover, the probes provided by this platform can rapidly release either amino‐ or carboxy‐containing compounds from prodrugs, during HOCl detection and imaging, to realize a therapeutic effect.  相似文献   

8.
Reactive oxygen species (ROS) play important roles in cell signaling pathways, while increased production of ROS may disrupt cellular homeostasis, giving rise to oxidative stress and a series of diseases. Utilizing these cell‐generated species as triggers for selective tuning polymer structures and properties represents a promising methodology for disease diagnosis and treatment. Recently, significant progress has been made in fabricating biomaterials including nanoparticles and macroscopic networks to interact with this dynamic physiological condition. These ROS‐responsive platforms have shown potential in a range of biomedical applications, such as cancer targeted drug delivery systems, cell therapy platforms for inflammation related disease, and so on.

  相似文献   


9.
Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A–NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A–NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A–NBC reactivation, RNase A–NBC shows a significant specific cytotoxicity against tumor cells.  相似文献   

10.
11.
In this study, we successfully synthesized CuxCoyS supraparticles (SPs) on the nanoscale featuring multiple pores inside and strong absorption from 400 to 900 nm. Porous CuxCoyS SPs produced the highest reactive oxygen species (ROS) yield (1.39) when illuminated with near‐infrared (NIR) light. Furthermore, we demonstrated that CuxCoyS SPs could be used to identify cancer cells through intracellular telomerase‐responsive fluorescence (FL) imaging in living cells. Because the CuxCoyS SPs were associated with telomerase‐responsive bioimaging and high ROS production, they can be efficiently used in the diagnosis and therapy of tumors with high selectivity and excellent therapeutic effects in vivo. This study provides a new vision for the creation of multifunctional SPs, which can be used as cellular sensors and control tools for pathologies across a broad range of biological systems.  相似文献   

12.
13.
Reactive oxygen, nitrogen, and sulfur species (RONSS) are cross‐reacting and involved in a myriad of physiological and pathological processes. Similar to acidic pH, overexpressed enzymes, and other specific stimuli found in pathological microenvironments, RONSS are recognized as a category of emerging triggering events and have been employed to design activatable theranostic nanomaterials. In this regard, a plethora of RONSS‐responsive nanovectors including polymeric micelles and vesicles (also referred to as polymersomes) are constructed. In comparison with micelles, polymersomes comprising aqueous interiors enclosed by hydrophobic membranes show intriguing applications in synergistic delivery of both hydrophobic and hydrophilic drugs, nanoreactors, and artificial organelles. This feature article focuses on the recent developments in the fabrication of RONSS‐responsive polymersomes and their potential biomedical applications in terms of triggered drug delivery.

  相似文献   


14.
15.
16.
17.
Fluorescence imaging of tyrosinase (a cancer biomarker) in living organisms is of great importance for biological studies. However, selective detection of tyrosinase remains a great challenge because current fluorescent probes that contain the 4‐hydroxyphenyl moiety show similar fluorescence responses to both tyrosinase and some reactive oxygen species (ROS), thereby suffering from ROS interference. Herein, a new tyrosinase‐recognition 3‐hydroxybenzyloxy moiety, which exhibits distinct fluorescence responses for tyrosinase and ROS, is proposed. Using the recognition moiety, we develop a near‐infrared fluorescence probe for tyrosinase activity, which effectively eliminates the interference from ROS. The high specificity of the probe was demonstrated by imaging and detecting endogenous tyrosinase activity in live cells and zebrafish and further validated by an enzyme‐linked immunosorbent assay. The probe is expected to be useful for the accurate detection of tyrosinase in complex biosystems.  相似文献   

18.
We report boronate-caged guanidine-lipid 1 that activates liposomes for cellular delivery only upon uncaging of this compound by reactive oxygen species (ROS) to produce cationic lipid products. These liposomes are designed to mimic the exceptional cell delivery properties of cell-penetrating peptides (CPPs), while the inclusion of the boronate cage is designed to enhance selectivity such that cell entry will only be activated in the presence of ROS. Boronate uncaging by hydrogen peroxide was verified by mass spectrometry and zeta potential (ZP) measurements. A microplate-based fluorescence assay was developed to study the ROS-mediated vesicle interactions between 1 -liposomes and anionic membranes, which were further elucidated via dynamic light scattering (DLS) analysis. Cellular delivery studies utilizing fluorescence microscopy demonstrated significant enhancements in cellular delivery only when 1 -liposomes were incubated with hydrogen peroxide. Our results showcase that lipid 1 exhibits strong potential as an ROS-responsive liposomal platform for targeted drug delivery applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号