首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every inverse semigroup possesses a natural partial order and therefore convexity with respect to this order is of interest. We study the extent to which an inverse semigroup is determined by its lattice of convex inverse subsemigroups; that is, if the lattices of two inverse semigroups are isomorphic, how are the semigroups related? We solve this problem completely for semilattices and for inverse semigroups in general reduce it to the case where the lattice isomorphism induces an isomorphism between the semilattices of idempotents of the semigroups. For many inverse semigroups, such as the monogenic ones, this case is the only one that can occur. In Part II, a study of the reduced case enables us to prove that many inverse semigroups, such as the free ones, are strictly determined by their lattices of convex inverse subsemigroups, and to show that the answer obtained here for semilattices can be extended to a broad class of inverse semigroups, including all finite, aperiodic ones. Received September 24, 2002; accepted in final form December 15, 2002.  相似文献   

2.
A parametric convex programming problem with an operator equality constraint and a finite set of functional inequality constraints is considered in a Hilbert space. The instability of this problem and, as a consequence, the instability of the classical Lagrange principle for it is closely related to its regularity and the subdifferentiability properties of the value function in the optimization problem. A sequential Lagrange principle in nondifferential form is proved for the indicated convex programming problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. It is shown that the classical Lagrange principle in this problem can be naturally treated as a limiting variant of its stable sequential counterpart. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimal control problems and inverse problems is discussed. For two illustrative problems of these kinds, the corresponding stable Lagrange principles are formulated in sequential form.  相似文献   

3.
For a parametric convex programming problem in a Hilbert space with a strongly convex objective functional, a regularized Kuhn-Tucker theorem in nondifferential form is proved by the dual regularization method. The theorem states (in terms of minimizing sequences) that the solution to the convex programming problem can be approximated by minimizers of its regular Lagrangian (which means that the Lagrange multiplier for the objective functional is unity) with no assumptions made about the regularity of the optimization problem. Points approximating the solution are constructively specified. They are stable with respect to the errors in the initial data, which makes it possible to effectively use the regularized Kuhn-Tucker theorem for solving a broad class of inverse, optimization, and optimal control problems. The relation between this assertion and the differential properties of the value function (S-function) is established. The classical Kuhn-Tucker theorem in nondifferential form is contained in the above theorem as a particular case. A version of the regularized Kuhn-Tucker theorem for convex objective functionals is also considered.  相似文献   

4.
An inverse problem of determination of a coefficient in an elliptic equation is considered. This problem is ill-posed in the sense of Hadamard and Tikhonov's regularization method is used for solving it in a stable way. This method requires globally solving nonconvex optimization problems, the solution methods for which have been very little studied in the inverse problems community. It is proved that the objective function of the corresponding optimization problem for our inverse problem can be represented as the difference of two convex functions (d.c. functions), and the difference of convex functions algorithm (DCA) in combination with a branch-and-bound technique can be used to globally solve it. Numerical examples are presented which show the efficiency of the method.  相似文献   

5.
We study optimal solutions to an abstract optimization problem for measures, which is a generalization of classical variational problems in information theory and statistical physics. In the classical problems, information and relative entropy are defined using the Kullback-Leibler divergence, and for this reason optimal measures belong to a one-parameter exponential family. Measures within such a family have the property of mutual absolute continuity. Here we show that this property characterizes other families of optimal positive measures if a functional representing information has a strictly convex dual. Mutual absolute continuity of optimal probability measures allows us to strictly separate deterministic and non-deterministic Markov transition kernels, which play an important role in theories of decisions, estimation, control, communication and computation. We show that deterministic transitions are strictly sub-optimal, unless information resource with a strictly convex dual is unconstrained. For illustration, we construct an example where, unlike non-deterministic, any deterministic kernel either has negatively infinite expected utility (unbounded expected error) or communicates infinite information.  相似文献   

6.
A coefficient inverse problem for a parabolic equation is considered. Using a Carleman weight function, a globally strictly convex cost functional is constructed for this problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper reinvestigates a recently introduced notion of backscattering for the inverse obstacle problem in impedance tomography. Under mild restrictions on the topological properties of the obstacles, it is shown that the corresponding backscatter data are the boundary values of a function that is holomorphic in the exterior of the obstacle(s), which allows to reformulate the obstacle problem as an inverse source problem for the Laplace equation. For general obstacles, the convex backscattering support is then defined to be the smallest convex set that carries an admissible source, i.e., a source that yields the given (backscatter) data as the trace of the associated potential. The convex backscattering support can be computed numerically; numerical reconstructions are included to illustrate the viability of the method.  相似文献   

8.
We discuss inverse problems for the Helmholtz equation at fixed energy, specifically the inverse source problem and the inverse scattering problem from a medium or an obstacle. We introduce the convex scattering support of a far field, a set which will be a subset of the convex hull of the support of any source which can produce it. We give several theorems which explain how to compute the convex scattering support and how to relate it to the actual support of a source, medium, or obstacle. © 2003 Wiley Periodicals, Inc.  相似文献   

9.
In this note, we consider a control theory problem involving a strictly convex energy functional, which is not Gâteaux differentiable. The functional came up in the study of a shape optimization problem, and here we focus on the minimization of this functional. We relax the problem in two different ways and show that the relaxed variants can be solved by applying some recent results on two-phase obstacle-like problems of free boundary type. We derive an important qualitative property of the solutions, i.e., we prove that the minimizers are three-valued, a result which significantly reduces the search space for the relevant numerical algorithms.  相似文献   

10.
The article presents an algorithm for computing a quantity that serves as a criterion for the possibility of rock burst in a coal seam.We propose to seek this quantity in the two steps: At the first step, an inverse problem is solved to find the necessary quantities; while at the second step, we solve a boundary value problem for the biharmonic equation. The inverse problem can be solved by minimizing an objective functional that is shown to be strongly convex.  相似文献   

11.
For the approximate solution of ill‐posed inverse problems, the formulation of a regularization functional involves two separate decisions: the choice of the residual minimizer and the choice of the regularizor. In this paper, the Kullback–Leibler functional is used for both. The resulting regularization method can solve problems for which the operator and the observational data are positive along with the solution, as occur in many inverse problem applications. Here, existence, uniqueness, convergence and stability for the regularization approximations are established under quite natural regularity conditions. Convergence rates are obtained by using an a priori strategy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

13.
In a Hilbert space we consider a class of conditionally well-posed inverse problems for which a Hölder-type estimate of conditional stability on a closed convex bounded subset holds. We investigate the Ivanov quasi-solution method and its finite-dimensional version associated with minimization of a multi-extremal discrepancy functional over a conditional stability set or over a finite-dimensional section of this set, respectively. For these optimization problems, we prove that each of their stationary points that is located not too far from the desired solution of the original inverse problem belongs to a small neighborhood of the solution. Estimates for the diameter of this neighborhood in terms of error levels in input data are also given.  相似文献   

14.
《Optimization》2012,61(3):555-575
On the base of a given strictly convex function defined on the Euclidean space E n ( n S 2) we can-without the assumption that it is differentiable - introduce some manifolds in topologic sense. Such manifolds are sets of all optimal points of a certain parametric non-linear optimization problem. This paper presents above all certain generalization of some results of [F. No ? i ) ka and L. Grygarová (1991). Some topological questions connected with strictly convex functions. Optimization , 22 , 177-191. Akademie Verlag, Berlin] and [L. Grygarová (1988). Über Lösungsmengen spezieller konvexer parametrischer Optimierungsaufgaben . Optimization 19 , 215-228. Akademie Verlag Berlin], under less strict assumptions. The main results are presented in Sections 3 and 4, in Section 3 the geometrical characterization of the set of optimal points of a certain parametric minimization problem is presented; in Section 4 we study a maximization non-linear parametric problem assigned to it. It seems that it is a certain pair of parametric optimization problems with the same set of their optimal points, so that this pair of problems can be denoted as a pair of dual parametric non-linear optimization problems. This paper presents, most of all in Section 2, a number of interesting geometric facts about strictly convex functions. From the point of view of non-smooth analysis the present article is a certain complement to Chapter 4.3 of the book [B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer (1982). Nonlinear Parametric Optimization . Akademie Verlag, Berlin] where a convex parametric minimization problem is considered under more general and stronger conditions (but without any assumptions concerning strict convexity and without geometrical aspects).  相似文献   

15.
We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak compact and convex valued maps equipped with the Scott topology, is continuous. For finite dimensional Euclidean spaces, where the L-derivative and the Clarke gradient coincide, we provide a simple characterization of the basic open subsets of the L-topology. We use this to verify that the L-topology is strictly coarser than the well-known Lipschitz norm topology. A complete metric on Lipschitz maps is constructed that is induced by the Hausdorff distance, providing a topology that is strictly finer than the L-topology but strictly coarser than the Lipschitz norm topology. We then develop a fundamental theorem of calculus of second order in finite dimensions showing that the continuous integral operator from the continuous Scott domain of non-empty convex and compact valued functions to the continuous Scott domain of ties is inverse to the continuous operator induced by the L-derivative. We finally show that in dimension one the L-derivative operator is a computable functional.  相似文献   

16.
The split feasibility problem deals with finding a point in a closed convex subset of the domain space of a linear operator such that the image of the point under the linear operator is in a prescribed closed convex subset of the image space. The split feasibility problem and its variants and generalizations have been widely investigated as a means for resolving practical inverse problems in various disciplines. Many iterative algorithms have been proposed for solving the problem. This article discusses a split feasibility problem which does not have a solution, referred to as an inconsistent split feasibility problem. When the closed convex set of the domain space is the absolute set and the closed convex set of the image space is the subsidiary set, it would be reasonable to formulate a compromise solution of the inconsistent split feasibility problem by using a point in the absolute set such that its image of the linear operator is closest to the subsidiary set in terms of the norm. We show that the problem of finding the compromise solution can be expressed as a convex minimization problem over the fixed point set of a nonexpansive mapping and propose an iterative algorithm, with three-term conjugate gradient directions, for solving the minimization problem.  相似文献   

17.
This paper proposes a feedback neural network model for solving convex nonlinear programming (CNLP) problems. Under the condition that the objective function is convex and all constraint functions are strictly convex or that the objective function is strictly convex and the constraint function is convex, the proposed neural network is proved to be stable in the sense of Lyapunov and globally convergent to an exact optimal solution of the original problem. The validity and transient behavior of the neural network are demonstrated by using some examples.  相似文献   

18.
We present active set methods to evaluate the exact analytic efficient solution set for multi-criteria convex quadratic programming problems (MCQP) subject to linear constraints. The idea is based on the observations that a strictly convex programming problem admits a unique solution, and that the efficient solution set for a multi-criteria strictly convex quadratic programming problem with linear equality constraints can be parameterized. The case of bi-criteria quadratic programming (BCQP) is first discussed since many of the underlying ideas can be explained much more clearly in the case of two objectives. In particular we note that the efficient solution set of a BCQP problem is a curve on the surface of a polytope. The extension to problems with more than two objectives is straightforward albeit some slightly more complicated notation. Two numerical examples are given to illustrate the proposed methods.  相似文献   

19.
考虑一类由椭圆性方程和热传导方程共同来刻画的准静态弹性模型,通过给定观测值来反演边界的牵引力.首先构造一个凸目标泛函,并引入Tikhonov正则化方法,使之极小化得到一个稳定的近似解.再用有限元离散求解,导出误差估计.最后,用数值例子说明算法的可行性和有效性.  相似文献   

20.
For optimal control problems, a new approach based on the search for an extremum of a special functional is proposed. The differential problem is reformulated as an ill-posed variational inverse problem. Taking into account ill-posedness leads to a stable numerical minimization procedure. The method developed has a high degree of generality, since it allows one to find special controls. Several examples of interest concerning the solution of classical optimal control problems are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号