首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2‐{1‐[(Pyrazin‐2‐ylformamido)methyl]cyclohexyl}acetic acid (Pyr‐Gpn‐OH), C14H19N3O3, is an N‐protected derivative of gabapentin (Gpn). The compound crystallizes in the triclinic space group P and the molecular conformation is stabilized by intramolecular five‐ (C5) and seven‐membered (C7) hydrogen‐bonded rings. The packing of the molecules reveals intermolecular O—H...O and C—H...N hydrogen bonds, together with π–π interactions.  相似文献   

2.
In order to investigate the relative stability of N—H...O and N—H...S hydrogen bonds, we cocrystallized the antithyroid drug 6‐propyl‐2‐thiouracil with two complementary heterocycles. In the cocrystal pyrimidin‐2‐amine–6‐propyl‐2‐thiouracil (1/2), C4H5N3·2C7H10N2OS, (I), the `base pair' is connected by one N—H...S and one N—H...N hydrogen bond. Homodimers of 6‐propyl‐2‐thiouracil linked by two N—H...S hydrogen bonds are observed in the cocrystal N‐(6‐acetamidopyridin‐2‐yl)acetamide–6‐propyl‐2‐thiouracil (1/2), C9H11N3O2·2C7H10N2OS, (II). The crystal structure of 6‐propyl‐2‐thiouracil itself, C7H10N2OS, (III), is stabilized by pairwise N—H...O and N—H...S hydrogen bonds. In all three structures, N—H...S hydrogen bonds occur only within R22(8) patterns, whereas N—H...O hydrogen bonds tend to connect the homo‐ and heterodimers into extended networks. In agreement with related structures, the hydrogen‐bonding capability of C=O and C=S groups seems to be comparable.  相似文献   

3.
Crystals of the title compound, 2C3H7N6+·C10H6O6S22−·C3H6N6·5H2O, are built up of neutral 2,4,6‐triamino‐1,3,5‐triazine (melamine), singly protonated melaminium cations, naphthalene‐1,5‐disulfonate dianions and water molecules. Two independent anions lie across centres of inversion in the space group P. The melamine molecules are connected by N—H...N hydrogen bonds into two different one‐dimensional polymers almost parallel to the (010) plane, forming a stacking structure along the b axis. The centrosymmetric naphthalene‐1,5‐disulfonate anions interact with water molecules via O—H...O hydrogen bonds, forming layers parallel to the (001) plane. The cations and anions are connected by N—H...O and O—H...N hydrogen bonds to form a three‐dimensional supramolecular framework.  相似文献   

4.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

5.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

6.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

7.
The crystal structure of the title compound, C10H10N2O2·H2O, also known as l ‐5‐benzylhydantoin monohydrate, is described in terms of two‐dimensional supramolecular arrays built up from infinite chains assembled via N—H...O and O—H...O hydrogen bonds among the organic molecules and solvent water molecules, with graph‐set R33(10)C(5)C22(6). The hydrogen‐bond network is reinforced by stacking of the layers through C—H...π interactions.  相似文献   

8.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

9.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

10.
In order to study the preferred hydrogen‐bonding pattern of 6‐amino‐2‐thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1‐methylpyrrolidin‐2‐one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures contain R21(6) N—H...O hydrogen‐bond motifs. In the latter four structures, additional R22(8) N—H...O hydrogen‐bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2‐thiouracil derivatives form homodimers stabilized by an R22(8) hydrogen‐bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.  相似文献   

11.
Both the 1:1 and 2:1 molecular adducts of 4‐methylimidazole (4‐MeIm) and terephthalic acid (H2TPA) are organic salts, viz. C4H7N2+·C8H5O4, (I), and 2C4H7N2+·C8H4O42−, (II), respectively. The component ions in (I) are linked by N—H...O and O—H...O hydrogen bonds into continuous two‐dimensional layers built from R64(32) hydrogen‐bond motifs running parallel to the (100) plane. These adjacent two‐dimensional layers are in turn linked by a combination of C—H...O, C—H...π and π–π interactions into a three‐dimensional network. In the crystal structure of (II), with the anion located on an inversion centre, only N—H...O hydrogen bonds result in two‐dimensional layers built from R88(42) hydrogen‐bond motifs running parallel to the (102) plane. Being similar to those in (I), these layers are also linked by means of C—H...O, C—H...π and π–π interactions, forming a three‐dimensional network. This study indicates that, on occasion, a change of the reactant concentration can exert a pivotal influence on the construction of supramolecular structures based on hydrogen bonds.  相似文献   

12.
In the crystal structure of 2,2′‐bipyridinium(1+) bromide monohydrate, C10H9N2+·Br·H2O, the cation has a cisoid conformation with an intramolecular N—H⋯N hydrogen bond. The cation also forms an N—H⋯O hydrogen bond to an adjacent water mol­ecule, which in turn forms O—H⋯Br hydrogen bonds to adjacent Br anions. In this way, a chain is formed extending along the b axis. Additional interactions (C—H⋯Br and π–π) serve to stabilize the structure further.  相似文献   

13.
In the crystal structure of the title compound, C12H9N4O+·ClO4, the protonated cation adopts a cis‐I conformation and approximately planar geometry. Each perchlorate anion acts as the acceptor of three C—H⋯O weak interactions, which, together with N—H⋯N and C—H⋯N hydrogen bonds between the protonated cations, extend this structure into a three‐dimensional hydrogen‐bonded network.  相似文献   

14.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

15.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

16.
In cytosinium succinate (systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium 3‐carboxypropanoate), C4H6N3O+·C4H5O4, (I), the cytosinium cation forms one‐dimensional self‐assembling patterns by intermolecular N—H...O hydrogen bonding, while in cytosinium 4‐nitrobenzoate cytosine monohydrate [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium 4‐nitrobenzoate 4‐aminopyrimidin‐2(1H)‐one solvate monohydrate], C4H6N3O+·C7H4NO4·C4H5N3O·H2O, (II), the cytosinium–cytosine base pair, held together by triple hydrogen bonds, leads to one‐dimensional polymeric ribbons via double N—H...O hydrogen bonds. This study illustrates clearly the different alignment of cytosine molecules in the crystal packing and their ability to form supramolecular hydrogen‐bonded networks with the anions.  相似文献   

17.
Crystals of the title compound, C4H8N5+·C2F3O2, are built up of singly protonated 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium cations and trifluoroacetate anions. The CF3 group of the anion is disordered. The oppositely charged ions interact via almost linear N—H...O hydrogen bonds, forming a CF3COO...C4H8N5+ unit. Two units related by an inversion centre interact through a pair of N—H...N hydrogen bonds, forming planar (CF3COO...C4H8N5+...C4H8N5+·CF3COO) aggregates that are linked by a pair of N—H...O hydrogen bonds into chains running along the c axis.  相似文献   

18.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   

19.
In the inner‐salt zwitterion of 3,6‐bis(pyridin‐2‐yl)pyrazine‐2,5‐dicarboxylic acid, (I), namely 5‐carboxy‐3‐(pyridin‐1‐ium‐2‐yl)‐6‐(pyridin‐2‐yl)pyrazine‐2‐carboxylate, [C16H10N4O4, (Ia)], the pyrazine ring has a twist–boat conformation. The opposing pyridine and pyridinium rings are almost perpendicular to one another, with a dihedral angle of 80.24 (18)°, and are inclined to the pyrazine mean plane by 36.83 (17) and 43.74 (17)°, respectively. The carboxy and carboxylate groups are inclined to the mean plane of the pyrazine ring by 43.60 (17) and 45.46 (17)°, respectively. In the crystal structure, the molecules are linked via N—H...O and O—H...O hydrogen bonds, leading to the formation of double‐stranded chains propagating in the [010] direction. On treating (Ia) with aqueous 1 M HCl, the diprotonated dihydrate form 2,2′‐(3,6‐dicarboxypyrazine‐2,5‐diyl)bis(pyridin‐1‐ium) dichloride dihydrate [C16H12N4O42+·2Cl·2H2O, (Ib)] was obtained. The cation lies about an inversion centre. The pyridinium rings and carboxy groups are inclined to the planar pyrazine ring by 55.53 (9) and 19.8 (2)°, respectively. In the crystal structure, the molecules are involved in N—H...Cl, O—H...Owater and Owater—H...Cl hydrogen bonds, leading to the formation of chains propagating in the [010] direction. When (Ia) was recrystallized from dimethyl sulfoxide (DMSO), the DMSO disolvate 3,6‐bis(pyridin‐2‐yl)pyrazine‐2,5‐dicarboxylic acid dimethyl sulfoxide disolvate [C16H10N4O4·2C2H6OS, (Ic)] of (I) was obtained. Here, the molecule of (I) lies about an inversion centre and the pyridine rings are inclined to the planar pyrazine ring by only 23.59 (12)°. However, the carboxy groups are inclined to the pyrazine ring by 69.0 (3)°. In the crystal structure, the carboxy groups are linked to the DMSO molecules by O—H...O hydrogen bonds. In all three crystal structures, the presence of nonclassical hydrogen bonds gives rise to the formation of three‐dimensional supramolecular architectures.  相似文献   

20.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号