首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   

2.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

3.
The zinc(II) atom in the centrosymmetric complex is in a distorted N6 octahedral geometry defined by two tridentate ligands. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In the title compound, germanium is penta‐coordinated and adopts a trigonal bipyramidal geometry. The (2‐thienyl)phenyl group and the nitrogen atom each occupy an apical position with a transannular N→Ge bond distances of 2.247(4) and 2.219(4) Å for the two independent molecules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The chiral compound (H2cydiampy)[RuCl3(p‐cymene)]2 has been obtained in high yield by treating [RuCl2(p‐cymene)]2 with an excess of hydrochloric acid in the presence of one equivalent of N,N′‐bis‐(6‐methylpyrid‐2‐yl)‐(1R,2R)‐1,2‐diaminocyclohexane (cydiampy). It crystallizes in the chiral tetragonal space group P43212, with half of the atoms of the dication related to the other half by a crystallographic C2 axis that also makes equivalent the two anionic metal moieties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

7.
Chiral secondary alcohols are very important building blocks and valuable synthetic intermediates both in organic synthesis and in the pharmaceutical industry for producing biologically active complex molecules. A series of new chiral Ru–phosphinite complexes ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) were prepared from chiral C2‐symmetric ferrocenyl phosphinites and corresponding chloro complex, [Ru(η6p‐cymene)(μ‐Cl)Cl]2. The complexes were characterized using conventional spectroscopic methods. The binuclear complexes were tested as pre‐catalysts and were found to be good pre‐catalysts for the asymmetric transfer hydrogenation of substituted acetophenones in basic 2‐propanol at 82°C, providing the corresponding optically active alcohols with almost quantitative conversion and modest to high enantioselectivities (46–97%). Amongst the all complexes, complex 6 gave the highest ee of 97% in the reduction of 2‐methoxyacetophenone to (S)‐1‐(2‐methoxyphenyl)ethanol at 82°C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The cation in the title compound has crystallographic threefold symmetry. The zinc atom is in a distorted octahedral geometry, being coordinated by three nitrogen atoms of the imine and three nitrogen atoms of imidazole. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
In the salt trimethoprimium ferrocenecarboxylate [systematic name: 2,4‐diamino‐5‐(3,4,5‐trimethoxybenzyl)pyrimidin‐1‐ium ferrocene‐1‐carboxylate], (C14H19N4O3)[Fe(C5H5)(C6H4O2)], (I), of the antibacterial compound trimethoprim, the carboxylate group interacts with the protonated aminopyrimidine group of trimethoprim via two N—H…O hydrogen bonds, generating a robust R 22(8) ring motif (heterosynthon). However, in the cocrystal 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–ferrocene‐1‐carboxylic acid (1/1), [Fe(C5H5)(C6H5O2)]·C6H8ClN3, (II), the carboxyl–aminopyrimidine interaction [R 22(8) motif] is absent. The carboxyl group interacts with the pyrimidine ring via a single O—H…N hydrogen bond. The pyrimidine rings, however, form base pairs via a pair of N—H…N hydrogen bonds, generating an R 22(8) supramolecular homosynthon. In salt (I), the unsubstituted cyclopentadienyl ring is disordered over two positions, with a refined site‐occupation ratio of 0.573 (10):0.427 (10). In this study, the two five‐membered cyclopentadienyl (Cp) rings of ferrocene are in a staggered conformation, as is evident from the C…Cg Cg …C pseudo‐torsion angles, which are in the range 36.13–37.53° for (I) and 22.58–23.46° for (II). Regarding the Cp ring of the minor component in salt (I), the geometry of the ferrocene ring is in an eclipsed conformation, as is evident from the C…Cg Cg …C pseudo‐torsion angles, which are in the range 79.26–80.94°. Both crystal structures are further stabilized by weak π–π interactions.  相似文献   

10.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

11.
The application of transition metal chelates as chemotherapeutic agents has the advantage that they can be used as a scaffold around which ligands with DNA recognition elements can be anchored. The facile substitution of these components allows for the DNA recognition and binding properties of the metal chelates to be tuned. Copper is a particularly interesting choice for the development of novel metallodrugs as it is an endogenous metal and is therefore less toxic than other transition metals. The title compound, [Cu(C16H11N2O)2], was synthesized by reacting N‐(quinolin‐8‐yl)benzamide and the metal in a 2:1 ratio. Ligand coordination required deprotonation of the amide N—H group and the isolated complex is therefore neutral. The metal ion adopts a flattened tetrahedral coordination geometry with the ligands in a pseudo‐trans configuration. The free rotation afforded by the formal single bond between the amide group and phenyl ring allows the phenyl rings to rotate out‐of‐plane, thus alleviating nonbonded repulsion between the phenyl rings and the quinolyl groups within the complex. Weak C—H…O interactions stabilize a dimer in the solid state. Density functional theory (DFT) simulations at the PBE/6‐311G(dp) level of theory show that the solid‐state structure (C1 symmetry) is 79.33 kJ mol−1 higher in energy than the lowest energy gas‐phase structure (C2 symmetry). Natural bond orbital (NBO) analysis offers an explanation for the formation of the C—H…O interactions in electrostatic terms, but the stabilizing effect is insufficient to support the dimer in the gas phase.  相似文献   

12.
The title compound, C14H11NO4, exists in the solid phase in the zwitterionic form, 2‐{[(4‐carboxy‐3‐hydroxyphenyl)iminiumyl]methyl}phenolate, with the H atom from the phenol group on the 2‐hydroxybenzylidene ring transferred to the imine N atom, resulting in a strong intramolecular N—H...O hydrogen bond between the iminium H atom and the phenolate O atom, forming a six‐membered hydrogen‐bonded ring. In addition, there is an intramolecular O—H...O hydrogen bond between the carboxylic acid group and the adjacent hydroxy group of the other ring, and an intermolecular C—H...O contact involving the phenol group and the C—H group adjacent to the imine bond, connecting the molecules into a two‐dimensional network in the (10) plane. π–π stacking interactions result in a three‐dimensional network. This study is important because it provides crystallographic evidence, supported by IR data, for the iminium zwitterionic form of Schiff bases.<!?tpb=12pt>  相似文献   

13.
Since the discovery of electrochemically active LiFePO4, materials with tunnel and layered structures built up of transition metals and polyanions have become the subject of much research. A new quaternary arsenate, sodium calcium trinickel aluminium triarsenate, NaCa1–x Ni3–2x Al2x (AsO4)3 (x = 0.23), was synthesized using the flux method in air at 1023 K and its crystal structure was determined from single‐crystal X‐ray diffraction (XRD) data. This material was also characterized by qualitative energy‐dispersive X‐ray spectroscopy (EDS) analysis and IR spectroscopy. The crystal structure belongs to the α‐CrPO4 type with the space group Imma . The structure is described as a three‐dimensional framework built up of corner‐edge‐sharing NiO6, (Ni,Al)O6 and AsO4 polyhedra, with channels running along the [100] and [010] directions, in which the sodium and calcium cations are located. The proposed structural model has been validated by bond‐valence‐sum (BVS) and charge‐distribution (CHARDI) tools. The sodium ionic conduction pathways in the anionic framework were investigated by means of the bond‐valence site energy (BVSE) model, which predicted that the studied material will probably be a very poor Na+ ion conductor (bond‐valence activation energy ∼7 eV).  相似文献   

14.
The title compounds, C15H16ClN2O+·Br·1.5H2O and C15H16BrN2O+·Br·1.5H2O, are isomorphous. The benzene ring is oriented nearly normal to the pyridine ring in both compounds. The molecular packing is mainly influenced by intermolecular O—H⋯O and O—H⋯Br interactions, as well as weak intramolecular C—H⋯O interactions. The H2OBr units form an extended water–bromide chain, with a bridging water mol­ecule on a twofold axis.  相似文献   

15.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

16.
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure.  相似文献   

17.
The title compound comprises trigonal bipyramidal SnPh3(tspa) anions and iPr2NH2 cations linked into centrosymmetric dimers by N? H·O hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The synthesis and molecular structure of trans‐{bis[(acetato‐κO)‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 4 ) and cis‐{bis[chlorido‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 5 ) is reported. Both neutral chelate complexes are prepared from the corresponding CoII salt [CoX2; X = OAc ( 1 ), Cl ( 2 )] and 2‐(1‐aziridinyl)ethanol (azolH, 3 ) in dry dichloromethane. A third, ionic complex, cis‐{bis[aqua‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) diacetate ( 6 ) is formed from 4 in the presence of water and could be crystallized from aqueous dichloromethane. In all cases, 2‐(1‐aziridinyl)ethanol is coordinating as bidentate chelate ligand by the nitrogen and oxygen atom of the aziridinyl and hydroxy moiety. After purification, the compounds have been fully characterized using IR spectroscopy and FAB+‐MS. The single‐crystal X‐ray structure analysis revealed a distorted octahedral geometry for all complexes with either trans ( 4 ) or cis ( 5 , 6 ) configuration.  相似文献   

19.
The mixed‐amide phosphinates, rac‐phenyl (N‐methylcyclohexylamido)(p‐tolylamido)phosphinate, C20H27N2O2P, (I), and rac‐phenyl (allylamido)(p‐tolylamido)phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)‐(Cl)P(O)(OC6H5)(NHC6H4p‐CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH‐cyclo‐C6H11) was synthesized for the first time and used for the synthesis of rac‐phenyl (benzylamido)(cyclohexylamido)phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed‐amide phosphinates are discussed. The P atom in each compound is in a distorted tetrahedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p‐tolylamido substituent makes a longer P—N bond than those involving the N‐methylcyclohexylamido and allylamido substituents. In (III), the differences between the P—N bond lengths involving the cyclohexylamido and benzylamido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen‐bonding interactions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).  相似文献   

20.
Metalloporphyrin complexes containing an additional imidazole ligand can provide information about the effect of deprotonation or hydrogen bonding on the axial histidine unit in heme proteins. The title high‐spin five‐coordinate imidazolate‐ligated iron(II) porphyrinate, [K(C18H36N2O6)][Fe(C4H5N2)(C44H28N4)]·C4H6N2·2C4H8O, has been synthesized and investigated. The solvated salt crystallizes with one 2‐methylimidazole molecule, two tetrahydrofuran solvent molecules and a potassium cation chelated inside a cryptand‐222 (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) molecule. The imidazolate ligand is ordered. The average Fe—Np (Np is a porphyrin N atom) bond length is 2.113 (11) Å and the axial Fe—NIm (NIm is an imidazolate N atom) is 2.0739 (13) Å. The out‐of‐plane displacement of the FeII atom from the 24‐atom mean plane is 0.6098 (5) Å, indicating an apparent doming of the porphyrin core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号