首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound comprises trigonal bipyramidal SnPh3(tspa) anions and iPr2NH2 cations linked into centrosymmetric dimers by N? H·O hydrogen bonds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
[2‐(Me2NCH2)C6H4]Se? S(S)PR2 [R = Ph (1), OiPr (2)] were prepared by reacting [2‐(Me2NCH2)C6H4]2Se2 with the appropriate disulfanes, [R2P(S)S]2. The compounds were characterized by multinuclear magnetic resonance (1H, 13C, 31P). The molecular structures of 1 and 2 were determined by single‐crystal X‐ray diffraction. Both compounds are monomeric and the nitrogen atom of the pendent CH2NMe2 arm is strongly coordinated to the selenium atom. The organophosphorus ligands are monodentate, thus resulting in a T‐shaped coordination geometry around selenium. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Compact and highly reactive bicyclo[1.1.0]butanes constitute one of the most fascinating classes of organic compounds. Furthermore, interplay of bicyclo[1.1.0]butanes with their valence isomers, such as buta‐1,3‐dienes and cyclobutenes, is among the fundamental pericyclic transformations in organic chemistry. Herein we report the back‐and‐forth interconversion between the cyclotrisilenes and thiatrisilabicyclo[1.1.0]butanes, allowing for the synthesis of novel representatives of such classes of highly reactive organometallics. The peculiar structural and bonding features of the newly synthesized compounds, as well as the mechanism of their isomerization, were verified both experimentally and computationally.  相似文献   

4.
5.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

6.
Redistribution reactions between diorganodiselenides of type [2‐(R2NCH2)C6H4]2Se2 [R = Et, iPr] and bis(diorganophosphinothioyl disulfanes of type [R′2P(S)S]2 (R = Ph, OiPr) resulted in the hypervalent [2‐(R2NCH2)C6H4]SeSP(S)R′2 [R = Et, R′ = Ph ( 1 ), OiPr ( 2 ); R = iPr, R′ = Ph ( 3 ), OiPr ( 4 )] species. All new compounds were characterized by solution multinuclear NMR spectroscopy (1H, 13C, 31P, 77Se) and the solid compounds 1 , 3 , and 4 also by FT‐IR spectroscopy. The crystal and molecular structures of 3 and 4 were determined by single‐crystal X‐ray diffraction. In both compounds the N(1) atom is intramolecularly coordinated to the selenium atom, resulting in T‐shaped coordination arrangements of type (C,N)SeS. The dithio organophosphorus ligands act monodentate in both complexes, which can be described as essentially monomeric species. Weak intermolecular S ··· H contacts could be considered in the crystal of 3 , thus resulting in polymeric zig‐zag chains of R and S isomers, respectively.  相似文献   

7.
In the title compound, [Ni(C12H11N2)2], the NiII cation lies on an inversion centre and has a square‐planar coordination geometry. This transition metal complex is composed of two deprotonated N,N′‐bidentate 2‐[(phenylimino)ethyl]‐1H‐pyrrol‐1‐ide ligands around a central NiII cation, with the pyrrolide rings and imine groups lying trans to each other. The Ni—N bond lengths range from 1.894 (3) to 1.939 (2) Å and the bite angle is 83.13 (11)°. The Ni—N(pyrrolide) bond is substantially shorter than the Ni—N(imino) bond. The planes of the phenyl rings make a dihedral angle of 78.79 (9)° with respect to the central NiN4 plane. The molecules are linked into simple chains by an intermolecular C—H...π interaction involving a phenyl β‐C atom as donor. Intramolecular C—H...π interactions are also present.  相似文献   

8.
9.
The structures of 5‐(2‐hydroxyethyl)‐2‐[(pyridin‐2‐yl)amino]‐1,3‐thiazolidin‐4‐one, C10H11N3O2S, (I), and ethyl 4‐[(4‐oxo‐1,3‐thiazolidin‐2‐yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46 , 635–639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17 , 6362–6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B 58 , 380–388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl–imine group in the five‐membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin‐4‐one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin‐4‐one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N—H...N and O—H...O and weak C—H...O hydrogen bonds, linking the molecules into a three‐dimensional hydrogen‐bond network. On the other hand, in (II), the molecules are linked via N—H...O hydrogen bonds into chains.  相似文献   

10.
The new type of alkenylxenon(II) salts [CF2=CXXe] [BF4] (X = H, Cl, CF3) was prepared by reacting the corresponding alkenyldifluoroboranes CF2=CXBF2 with XeF2 in 1, 1, 1, 3, 3‐pentafluoropropane (PFP) at —60 °C. The alkenylxenon(II) salts were characterised by multinuclear NMR spectroscopy. The influence of the substituent X at C‐1 on the stability of alkenylxenon(II) salts is discussed. Additionally the preparation of the potassium alkenyltrifluoroborate salts K [CF2=CXBF3] and their transformation into the boranes CF2=CXBF2 by fluoride abstraction in PFP is reported.  相似文献   

11.
Alloying in the coordination polymer [Mn1?xCox(tcm)2], (tcm = [C(CN)3]?) has been attempted and the physical properties have been investigated. All compounds are isostructural, but the lattice parameters and the distance between manganese and the adjacent nitrogen atom decrease with increasing cobalt content x. Magnetic susceptibility measurements show a Curie–Weiss behavior, with decreasing Weiss temperature with increasing cobalt content. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Reactions of tetraphenylphosphonium dibromoaurate(I) with 1,2‐bis(diphenylphosphino)‐1,2‐dicarba‐closo‐dodecaborane in 2:1 ratio in acetone solution yields brown crystals shown to be the title compound. A single crystal X‐ray study shows coordination of AuBr moieties by the phosphorus atoms of the ligand (Au‐P 2.253(1), 2.246(1); Ag‐Br 2.4041(7), 2.4067(7) Å), permitting a close Au···Au contact (2.9536(3) Å) with concomitant bending of the P‐Au‐Br arrays (173.99(4), 166.14(4)°) and a Br‐Au···Au‐Br torsion of 47.80(2)°.  相似文献   

13.
陈三平  范广  高胜利 《中国化学》2008,26(2):286-289
以1,2-反式-二(4-吡啶基)乙烯桥连卤化铜分别得到配合物[Cu2(bpe)Cl 2] n (1), [Cu2(bpe)Br2] n (2) 和 [Cu2(bpe)I2] n (3)。通过X-射线单晶衍射法对配合物1的结构进行了研究,晶体学数据:单斜晶系, P 2(1)/c空间群, a = 0.3788(8) nm, b = 1.5059(3) nm, c = 1.0875(2)nm, β = 96.262(4) °, V = 616.5(2)Å3, Z = 2, S = 1.002,最终残差因子( I >2 σ ( I )) R 1 = 0.0288, wR 2 = 0.0579,对于全部数据 R 1 = 0.0509, wR 2 = 0.0615。元素分析及红外光谱分析表明,该类配合物为同晶化合物。另外,通过热重分析对配合物的热稳定性进行了研究。  相似文献   

14.
Organotin(IV) carboxylates R2LNCSnOC(O)CH2P(E)Ph2, where LNC is an N‐chelating 2‐(dimethylamino)phenyl group, and R/E = Ph/void (1a), Ph/O (1b), Ph/S (1c), Me/void (2a), Me/O (2b) and Me/S (2c), were synthesized, characterized by 1H, 13C, 31P and 119Sn NMR, IR and MS spectra, and the solid‐state structures of 1b, 1c, 2b and 2c were determined by single‐crystal X‐ray diffraction. Spectral and structural data showed that the compounds are monomeric in CDCl3 solution and the solid state, with the organophosphorus groups in the α‐position of the monodentate carboxylate ligands not interacting with the tin atom. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Treatment of copper(I) halides CuX (X = Cl, Br, I) with lithium 2‐(diphenylphosphanyl)anilide [Li(HL)] in THF led to the formation of hexanuclear copper(I) complexes [Cu6X2(HL)4] [X = Cl ( 1 ), Br ( 2 ), I ( 3 )]. In compounds 1 – 3 , the copper atoms are in a distorted octahedral arrangement and the amide ligands adopt a μ3‐κP,κ2N bridging mode. Additionally there are two μ2‐bridging halide ligands. Each of the [Cu6X2(HL)4] clusters comprises two copper atoms, which are surrounded by two amide nitrogen atoms in an almost linear coordination [Cu–N: 186.2(3)–188.0(3) pm] and four copper atoms, which are connected to an amide N atom, a P atom, and a halogen atom in a distorted trigonal planar fashion [Cu–N: 199.6(3)–202.3(3) pm)].  相似文献   

16.
Triaminotriazolotriazole (TATOT) was used as a nitrogen‐rich ligand for the formation of the energetic ZnII complexes [ZnCl2(TATOT)2] · H2O ( 2 ), [Zn(H2O)(TATOT)3](NO3)2 · 2H2O ( 3 ), and [Zn(TATOT)4](ClO4)2 · 2H2O ( 4 ). The zinc species were prepared in a straightforward and inexpensive synthesis. The complexes 2 – 4 were structurally characterized using X‐ray diffraction. Additionally, the compounds were characterized using elemental analysis and infrared (IR) spectroscopy. Finally, the sensitivities toward thermal and mechanical stimuli were determined by differential thermal analysis (DTA) and BAM (Bundesanstalt für Materialforschung und ‐prüfung) methods.  相似文献   

17.
A new germanium complex, cis‐[Ge(pyca)2(OH)2]?2 H2O ( 1 ; pyca=pyridine‐2‐carboxylato), was synthesized by the reaction of [Ge(acac)2Cl2] (acac=acetylacetonato=pentane‐2,4‐dionato) with potassium pyridine‐2‐carboxylate (Kpyca) in H2O/THF. According to the single‐crystal X‐ray diffraction analysis, each Ge‐atom of 1 is coordinated by two pyca ligands and two OH? groups (Fig. 1). These molecules are bonded to each other via a system of H‐bonds resulting in a sheet‐like structure (Fig. 2). The complex is decomposed during heating with stepwise mass loss and formation of GeO2 as final product (Fig. 3).  相似文献   

18.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

19.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

20.
A 1:1 reaction of triphenyltin chloride with potassium N‐[(3,5‐dibromo‐2‐hydroxyphenyl)methylene] valinate in benzene under reflux leads to the formation of a novel mixed organotin binuclear complex, Ph3Sn(HL)·Ph2SnL [L = 3,5‐Br2‐2‐OC6H2CH?NCH(i‐Pr)COO], by means of a facile phenyl–tin bond cleavage process. The X‐ray structure reveals that there are two distinct types of carboxylate coordination mode and trans‐O2SnC2N and trans‐O2SnC3 in distorted trigonal bipyramidal geometries. The complex displays good in vitro cytotoxicity and antibacterial activities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号