首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

2.
The title compound, C23H17N3O4S, crystallizes with Z′ = 3 in the space group P. Two of the three independent molecules are broadly similar in terms of both their molecular conformations and their participation in hydrogen bonds, but the third molecule differs from the other two in both of these respects. The molecules are linked by a combination of N—H...O, N—H...N, C—H...O, C—H...N and C—H...π(arene) hydrogen bonds to form a continuous three‐dimensional framework structure within which a centrosymmetric six‐molecule aggregate can be identified as a key structural element.  相似文献   

3.
Six closely related N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H16ClNO2S, (I), N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐4‐phenylbenzamide, C26H20ClNO2S, (II), and 2‐bromo‐N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H15BrClNO2S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐iodobenzamide, C20H15ClINO2S, (IV), and N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐methoxybenzamide, C21H18ClNO3S, (V), the molecules are fully ordered, but in N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2,6‐difluorobenzamide, C20H14ClF2NO2S, (VI), which crystallizes with Z′ = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)–(VI) exhibit an intramolecular N—H…O hydrogen bond. The molecules of (I) and (VI) are linked by C—H…O hydrogen bonds to form finite zero‐dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C—H…π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C—H…O and C—H…π(arene) hydrogen bonds. Two C—H…O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol‐1‐yl 3,4‐dimethoxybenzoate, C15H13N3O4, (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.  相似文献   

4.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

5.
Four crystal structures of 2‐amino‐N‐(dimethylphenoxyethyl)propan‐1‐ol derivatives, characterized by X‐ray diffraction analysis, are reported. The free base (R,S)‐2‐amino‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]propan‐1‐ol, C13H21NO2, 1 , crystallizes in the space group P21/n, with two independent molecules in the asymmetric unit. The hydrochloride, (S)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium chloride, C13H22NO2+·Cl?, 2c , crystallizes in the space group P21, with one cation and one chloride anion in the asymmetric unit. The asymmetric unit of two salts of 2‐picolinic acid, namely, (R,S)‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 1p , and (R)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 2p , consists of one cation and one 2‐picolinate anion. Salt 1p crystallizes in the triclinic centrosymmetric space group P, while salt 2p crystallizes in the space group P41212. The conformations of the amine fragments are contrasted and that of 2p is found to have an unusual antiperiplanar arrangement about the ether group. The crystal packing of 1 and 2c is dominated by hydrogen‐bonded chains, while the structures of the 2‐picolinate salts have hydrogen‐bonded rings as the major features. In both salts with 2‐picolinic acid, the specific R12(5) hydrogen‐bonding motif is observed. Structural studies have been enriched by the generation of fingerprint plots derived from Hirshfeld surfaces.  相似文献   

6.
A fixed hydrogen‐bonding motif with a high probability of occurring when appropriate functional groups are involved is described as a `supramolecular hydrogen‐bonding synthon'. The identification of these synthons may enable the prediction of accurate crystal structures. The rare chiral hydrogen‐bonding motif R53(10) was observed previously in a cocrystal of 2,4,6‐trichlorophenol, 2,4‐dichlorophenol and dicyclohexylamine. In the title solvated salt, 2C4H12N+·C6H3Cl2O·(C6H3Cl2O·C6H4Cl2O)·2C4H8O, five components, namely two tert‐butylammonium cations, one 2,4‐dichlorophenol molecule, one 2,4‐dichlorophenolate anion and one 2,6‐dichlorophenolate anion, are bound by N—H…O and O—H…O hydrogen bonds to form a hydrogen‐bonded ring, with the graph‐set motif R53(10), which is further associated with two pendant tetrahydrofuran molecules by N—H…O hydrogen bonds. The hydrogen‐bonded ring has internal symmetry, with a twofold axis running through the centre of the 2,6‐dichlorophenolate anion, and is isostructural with a previous and related structure formed from 2,4‐dichlorophenol, dicyclohexylamine and 2,4,6‐trichlorophenol. In the title crystal, helical columns are built by the alignment and twisting of the chiral hydrogen‐bonded rings, along and across the c axis, and successive pairs of rings are associated with each other through C—H…π interactions. Neighbouring helical columns are inversely related and, therefore, no chirality is sustained, in contrast to the previous case.  相似文献   

7.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

8.
The reaction of 2‐cyanopyridine with N‐phenylthiosemicarbazide afforded 2‐[amino(pyridin‐2‐yl)methylidene]‐N‐phenylhydrazine‐1‐carbothioamide (Ham4ph) and crystals of 4‐phenyl‐5‐(pyridin‐2‐yl)‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thione (pyph3NS, 1 , C13H10N4S). Crystals of methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetate (phpy2NS, 2 , C16H14N4O2S), derived from 1 , were obtained by the reaction of Ham4ph with chloroacetic acid, followed by the acid‐catalyzed esterification of the carboxylic acid with methyl alcohol. Crystals of bis(methanol‐κO)bis(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)zinc(II)/cadmium(II) hexabromidocadmate(II), [Zn0.76Cd0.24(C16H14N4O2S)2(CH3OH)2][Cd2Br6] or [Zn0.76Cd0.24(phpy2NS)2(MeOH)2][Cd2Br6], 3 , and dichlorido(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)mercury(II), [HgCl2(C16H14N4O2S)] or [Hg(phpy2NS)Cl2], 4 , were synthesized using ligand 2 and CdBr2 or HgCl2, respectively. The molecular and supramolecular structures of the compounds were studied by X‐ray diffractometry. The asymmetric unit of 3 is formed from CdBr3 and M(phpy2NS)(MeOH) units, where the metal centre M has a 76% occupancy of ZnII and 24% of CdII. The M2+ centre of the cation, located on a crystallographic inversion centre, is hexacoordinated and appears as a slightly distorted octahedral [MN4O2]2+ cation. The Cd centre of the anion is coordinated by two terminal bromide ligands and two bridging bromide ligands that generate [Cd2Br6]2? cadmium–bromide clusters. These clusters display crystallographic inversion symmetry forming two edge‐shared tetrahedra and serve as agents that direct the structure in the formation of supramolecular assemblies. In mononuclear complex 4 , the coordination geometry around the Hg2+ ion is distorted tetrahedral and comprises two chloride ligands and two N‐atom donors from the phpy2NS ligand, viz. one pyridine N atom and the other from triazole. In the crystal packing, all four compounds exhibit weak intermolecular interactions, which facilitate the formation of three‐dimensional architectures. Along with the noncovalent interactions, the structural diversity in the complexes can be attributed to the metal centre and to the coordination geometry, as well as to its ionic or neutral character.  相似文献   

9.
In the title compound, C29H35ClN4O2, the bond lengths provide evidence for aromatic delocalization in the pyrazole ring but bond fixation in the fused imidazole ring, and the octyl chain is folded, rather than adopting an all‐trans chain‐extended conformation. A combination of N—H...N, C—H...N and C—H...O hydrogen bonds links the molecules into sheets, in which the hydrogen bonds occupy the central layer with the tert‐butyl and octyl groups arranged on either side, such that the closest contacts between adjacent sheets involve only the octyl groups. Comparisons are made with the supramolecular assembly in some simpler analogues.  相似文献   

10.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

11.
Michael addition of some substituted anilines to methyl acrylate in acidic medium afforded the methyl 3-(substituted anilino)propionates (1a—1i), which on treatment with hydrazine hydrate in methanol were converted into corresponding 3-(substituted anilino) propionohydrazides (2a—2i) in good yields. Microwave irradiation of the latter with pentane-2,4-dione afforded 1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-(substituted anilino)propan-1-ones (3a—3i) under solventless conditions. The structures were confirmed by spectroscopic data, elemental analyses and in case of the 3h by single crystal X-ray diffraction data.  相似文献   

12.
Hydrazones and their derivatives are closely related to imine compounds and are potential antimicrobial agents. They have also found application in supramolecular chemistry as multitopic ligands to link multiple metal centres for the design of hybrid molecular frameworks. The molecule of the title compound, C6H8N4, consists of an imine linkage with an N—N bond length of 1.3540 (14) Å. This asymmetric compound is nearly planar and adopts an E configuration about the azomethine C=N double bond. In the solid state, there are two intermolecular N—H…N interactions that interconnect the molecules into a two‐dimensional network. The three‐dimensional arrangement of the crystal packing is further stabilized by intermolecular π–π interactions interconnecting the centroids of the heterocyclic rings.  相似文献   

13.
The title compound, C16H12N4S, forms a three‐dimensional layered network structure via intermolecular hydrogen bonding and π‐stacking. The azomethine molecule adopts the thermodynamically stable E regioisomer and the pyridine substituents are antiperiplanar. The mean planes of the pyridine rings and the azomethine group to which they are connected are twisted by 27.27 (5) and 33.60 (5)°. The electrochemical energy gap of 2.3 eV based on the HOMO–LUMO energy difference is in agreement with the spectroscopically derived value.  相似文献   

14.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

15.
The 2‐amine derivatives of 5‐arylidene‐3H‐imidazol‐4(5H )‐one are a new class of bacterial efflux pump inhibitors, the chemical compounds that are able to restore antibiotic efficacy against multidrug resistant bacteria. 5‐Arylidene‐3H‐imidazol‐4(5H )‐ones with a piperazine ring at position 2 reverse the mechanisms of multidrug resistance (MDR) of the particularly dangerous Gram‐negative bacteria E. coli by inhibition of the efflux pump AcrA/AcrB/TolC (a main multidrug resistance mechanism in Gram‐negative bacteria, consisting of a membrane fusion protein, AcrA, a Resistant‐Nodulation‐Division protein, AcrB, and an outer membrane factor, TolC). In order to study the influence of the environment on the conformation of (Z )‐5‐(4‐chlorobenzylidene)‐2‐[4‐(2‐hydroxyethyl)piperazin‐1‐yl]‐3H‐imidazol‐4(5H )‐one, ( 3 ), two different salts were prepared, namely with picolinic acid {systematic name: 4‐[(Z )‐4‐(4‐chlorobenzylidene)‐5‐oxo‐3,4‐dihydro‐1H‐imidazol‐2‐yl]‐1‐(2‐hydroxyethyl)piperazin‐1‐ium pyridine‐2‐carboxylate, C16H20ClN4O2+·C6H4NO2, ( 3 a )} and 4‐nitrophenylacetic acid {systematic name: 4‐[(Z )‐4‐(4‐chlorobenzylidene)‐5‐oxo‐3,4‐dihydro‐1H‐imidazol‐2‐yl]‐1‐(2‐hydroxyethyl)piperazin‐1‐ium 2‐(4‐nitrophenyl)acetate, C16H20ClN4O2+·C8H6NO4, ( 3 b )}. The crystal structures of the new salts were determined by X‐ray diffraction. In both crystal structures, the molecule of ( 3 ) is protonated at an N atom of the piperazine ring by proton transfer from the corresponding acid. The carboxylate group of picolinate engages in hydrogen bonds with three molecules of the cation of ( 3 ), whereas the carboxylate group of 4‐nitrophenylacetate engages in hydrogen bonds with only two molecules of ( 3 ). As a consequence of these interactions, different orientations of the hydroxyethyl group of ( 3 ) are observed. The crystal structures are additionally stabilized by both C—H…N [in ( 3 a )] and C—H…O [in ( 3 a ) and ( 3 b )] intermolecular interactions. The geometry of the imidazolone fragment was compared with other crystal structures possessing this moiety. The tautomer observed in the crystal structures presented here, namely 3H‐imidazol‐4(5H )‐one [systematic name: 1H‐imidazol‐5(4H )‐one], is also that most frequently observed in other structures containing this heterocycle.  相似文献   

16.
In the title compound, C16H11Cl3N6S·C3H7NO, the seven‐membered ring adopts a conformation which is close to the twist‐boat form. The molecular components are linked into sheets by a combination of two N—H...N hydrogen bonds and two C—H...O hydrogen bonds. Comparisons are made with other aminopyrimidine derivatives.  相似文献   

17.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

18.
Orange rectangular blocks suitable for X‐ray diffraction analysis were obtained for the previously reported [Ahmad & Bano (2011). Int. J. ChemTech Res. 3 , 1470–1478] title chalcone, C15H14ClNOS. This solid‐emissive chalcone exhibits a planar structure and the bond parameters are compared with related compounds already described in the literature. The determination of the structure of this chalcone is quite relevant because it will play an important role in theoretical calculations to investigate potential two‐photon absorption processes and could also be useful for studying the interaction of such compounds with a biological target.  相似文献   

19.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   

20.
薛思佳  卞王东  柴安  吁松瑞 《中国化学》2008,26(8):1501-1505
本文首次合成标题化合物N-(4-甲基苯甲酰氨基)-N’-[5-(2-三氟甲基苯基)-2-呋喃甲酰硫脲。化合物(C21H16F3N3O3S, Mr = 447.43)单晶经测定为单斜晶体,空间群为P -1。在晶体中,存在一些分子内和分子间的相互作用,分子间还有C—H···π 的相互作用,这可能导致晶体更稳定的原因。目标产物的结构经IR, H NMR和元素分析测定确证。初步生物活性测试表明,部分化合物对棉花枯萎病、黄瓜灰霉病、苹果轮纹病和棉花炭疽病有较好的选择性杀菌活性;部分目标化合物有较好的除草活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号