首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we focus on a food chain chemostat model with general response functions, perturbed by white noise. Under appropriate assumptions, we establish sufficient conditions for the existence of a unique ergodic stationary distribution by using stochastic Lyapunov analysis method. Our main effort is to construct the suitable Lyapunov function.  相似文献   

2.
In this paper, we consider a chemostat model of competition between plasmid-bearing and plasmid-free organisms, perturbed by white noise. Firstly, we prove the existence and uniqueness of the global positive solution. Then by constructing suitable Lyapunov functions, we establish sufficient conditions for the existence of a unique ergodic stationary distribution. Furthermore, conditions for extinction of plasmid-bearing organisms are obtained. Theoretical analysis indicates that large noise intensity $\sigma_{2}^{2}$ is detrimental to the survival of plasmid-bearing organisms and is not conducive to the commercial production of genetically altered organisms. Finally, numerical simulations are presented to illustrate the results.  相似文献   

3.
This paper studies a food chain chemostat model with Monod response functions, which is perturbed by white noise. Firstly, we prove the existence and uniqueness of the global positive solution. Then sufficient conditions for the existence of a unique ergodic stationary distribution are established by constructing suitable Lyapunov functions. Moreover, we consider the extinction of microbes in two cases. In the first case, both the predator and prey species are extinct. In the second case, only the predator species is extinct, and the prey species survives. Finally, numerical simulations are carried out to illustrate the theoretical results.  相似文献   

4.
In this paper, we study the dynamical behavior of a stochastic food chain chemostat model, in which the white noise is proportional to the variables. Firstly, we prove the existence and uniqueness of the global positive solution. Then by constructing suitable Lyapunov functions, we show the system has a unique ergodic stationary distribution. Furthermore, the extinction of microorganisms is discussed in two cases. In one case, both the prey and the predator species are extinct, and in the other case, the prey species is surviving and the predator species is extinct. Finally, numerical experiments are performed for supporting the theoretical results.  相似文献   

5.
This paper addresses a stochastic SIS epidemic model with vaccination under regime switching. The stochastic model in this paper includes white and color noises. By constructing stochastic Lyapunov functions with regime switching, we establish sufficient conditions for the existence of a unique ergodic stationary distribution.  相似文献   

6.
In this paper, we study the dynamics of a stochastic Susceptible-Infective-Removed-Infective (SIRI) epidemic model with relapse. By constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence of an ergodic stationary distribution to the model. Moreover, sufficient conditions for extinction of the disease are also obtained.  相似文献   

7.
Complex population structure and the large-scale inter-patch connection human transportation underlie the recent rapid spread of infectious diseases of humans. Furthermore, the fluctuations in the endemicity of the diseases within patch dwelling populations are closely related with the hereditary features of the infectious agent. We present an SIR delayed stochastic dynamic epidemic process in a two-scale dynamic structured population. The disease confers temporary natural or infection-acquired immunity to recovered individuals. The time delay accounts for the time-lag during which naturally immune individuals become susceptible. We investigate the stochastic asymptotic stability of the disease free equilibrium of the scale structured mobile population, under environmental fluctuations and the impact on the emergence, propagation and resurgence of the disease. The presented results are demonstrated by numerical simulation results.  相似文献   

8.
This paper intends to develop a new method to obtain the threshold of an impulsive stochastic chemostat model with saturated growth rate in a polluted environment. By using the theory of impulsive differential equations and stochastic differential equations, we obtain conditions for the extinction and the permanence of the microorganisms of the deterministic chemostat model and the stochastic chemostat model. We develop a new numerical computation method for impulsive stochastic differential system to simulate and illustrate our theoretical conclusions. The biological results show that a small stochastic disturbance can cause the microorganism to die out, that is, a permanent deterministic system can go to extinction under the white noise stochastic disturbance. The theoretical method can also be used to explore the threshold of some impulsive stochastic differential equations.  相似文献   

9.
Alcohol abuse is a major social problem, which is often called social epidemic, for the some similarities to the classical infectious diseases. In this paper, we formulated a new stochastic alcoholism model based on the deterministic model proposed in \cite{Wangxy}, with the mortalities of all populations as well as the contact infected coefficient are all perturbed. Based on this model, we investigate the long-term stochastic dynamics behaviors of two equilibria of the corresponding deterministic model and point out the effect of random disturbance on the stability of the system. Finally, we carry out numerical simulations to support our theoretical results.  相似文献   

10.
In this paper, we formulate a stochastic virus dynamics model with intracellular delay and humoral immunity. By constructing some suitable Lyapunov functions, we show that the solution of stochastic model is going around each of the steady states of the corresponding deterministic model under some conditions. Then, numerical simulations are given to support the theoretical results. Finally, we propose several more effective way to control the spread of the virus by analyzing the sensitivity of the threshold of spread.  相似文献   

11.
A stochastic generalized logistic model is considered in this paper. The condition of the existence of its stationary distribution is generalized. Recurrence and strong stochastic persistence are obtained. Finally some numerical simulations are carried out to support our results.  相似文献   

12.
In this paper, we study a stochastic nutrient-phytoplankton-zooplankton model with cell size that represents the interaction between internal mechanism of species and external environment. We first investigate the existence and uniqueness of the global positive solution with positive initial values. Then we construct sufficient conditions for the existence of an ergodic stationary distribution of positive solution. Once more, we find that large noise intensities cause the extinctions of phytoplankton and zooplankton. Finally, numerical simulations are given to verify the correctness of theoretical results.  相似文献   

13.
We show that an undiscounted stochastic game possesses optimal stationary strategies if and only if a global minimum with objective value zero can be found to an appropriate nonlinear program with linear constraints. This nonlinear program arises as a method for solving a certain bilinear system, satisfaction of which is also equivalent to finding a stationary optimal solution for the game. The objective function of the program is a nonnegatively valued quadric polynomial.This research was supported in part by the National Science Foundation under the grant #ECS-8503440. We wish to thank the referee for many helpful comments and in streamlining the presentation.  相似文献   

14.
15.
In this paper, we investigate the dynamical behavior of a virus infection model with delayed humoral immunity. By using suitable Lyapunov functional and the LaSalle?s invariance principle, we establish the global stabilities of the two boundary equilibria. If R0<1R0<1, the uninfected equilibrium E0E0 is globally asymptotically stable; if R1<1<R0R1<1<R0, the infected equilibrium without immunity E1E1 is globally asymptotically stable. When R1>1R1>1, we obtain the sufficient conditions to the local stability of the infected equilibrium with immunity E2E2. The time delay can change the stability of E2E2 and lead to the existence of Hopf bifurcations. The stabilities of bifurcating periodic solutions is also studied. We check our theorems with numerical simulations in the end.  相似文献   

16.
This paper deals with a stochastic predator‐prey model in chemostat which is driven by Markov regime switching. For the asymptotic behaviors of this stochastic system, we establish the sufficient conditions for the existence of the stationary distribution. Then, we investigate, respectively, the extinction of the prey and predator populations. We explore the new critical numbers between survival and extinction for species of the dual‐threshold chemostat model. Numerical simulations are accomplished to confirm our analytical conclusions.  相似文献   

17.
This paper discusses the problem regarding the existence of optimal or nearly optimal stationary strategies for a player engaged in a nonleavable stochastic game. It is known that, for these games, player I need not have an -optimal stationary strategy even when the state space of the game is finite. On the contrary, we show that uniformly -optimal stationary strategies are available to player II for nonleavable stochastic games with finite state space. Our methods will also yield sufficient conditions for the existence of optimal and -optimal stationary strategies for player II for games with countably infinite state space. With the purpose of introducing and explaining the main results of the paper, special consideration is given to a particular class of nonleavable games whose utility is equal to the indicator of a subset of the state space of the game.  相似文献   

18.
In this paper, we discuss a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response. First, we show that this system has a unique positive solution as this is essential in any population dynamics model. Then, we investigate the asymptotic behavior of this system. When the white noise is small, the stochastic system imitates the corresponding deterministic system. Either there is a stationary distribution, or the predator population will die out. While if the white noise is large, besides the extinction of the predator population, both species in the system may also die out, which does not happen in the deterministic system. Finally, simulations are carried out to conform to our results.  相似文献   

19.
In this paper, we present a DI SIR epidemic model with two categories stochastic perturbations. The long time behavior of the two stochastic systems is studied. Mainly, we show how the solution goes around the infection-free equilibrium and the endemic equilibrium of deterministic system under different conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号