首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The design and synthesis of 3d–4f heterometallic coordination polymers have attracted much interest due to the intriguing diversity of their architectures and topologies. Pyridine‐2,6‐dicarboxylic acid (H2pydc) has a versatile coordination mode and has been used to construct multinuclear and heterometallic compounds. Two isostructural centrosymmetric 3d–4f coordination compounds constructed from pyridine‐2,6‐dicarboxylic acid and 4,4′‐bipyridine (bpy), namely 4,4′‐bipyridine‐1,1′‐diium diaquabis(μ2‐pyridine‐2,6‐dicarboxylato)tetrakis(pyridine‐2,6‐dicarboxylato)bis[4‐(pyridin‐4‐yl)pyridinium]cobalt(II)dieuropium(III) octahydrate, (C10H10N2)[CoEu2(C10H9N2)2(C7H3NO4)6(H2O)2]·8H2O, (I), and 4,4′‐bipyridine‐1,1′‐diium diaquabis(μ2‐pyridine‐2,6‐dicarboxylato)tetrakis(pyridine‐2,6‐dicarboxylato)bis[4‐(pyridin‐4‐yl)pyridinium]cobalt(II)diterbium(III) octahydrate, (C10H10N2)[CoTb2(C10H9N2)2(C7H3NO4)6(H2O)2]·8H2O, (II), were synthesized under hydrothermal conditions and characterized by IR and fluorescence spectroscopy, thermogravimetric analysis and powder X‐ray diffraction. Both compounds crystallize in the triclinic space group P. The EuIII and TbIII cations adopt nine‐coordinated distorted tricapped trigonal–prismatic geometries bridged by three pydc2? ligands. The CoII cation has a six‐coordination environment formed by two pydc2? ligands, two bpy ligands and two coordinated water molecules. Adjacent molecules are connected by π–π stacking interactions to form a one‐dimensional chain, which is further extended into a three‐dimensional supramolecular network by multipoint hydrogen bonds.  相似文献   

2.
Metal–organic frameworks (MOFs) are a new class of porous materials that have received widespread attention due to their potential applications in gas storage and/or separation, catalysis, luminescence, and so on. The title compound, poly[[(μ2‐3,3′‐dimethyl‐4,4′‐bipyridine‐κ2N:N′)bis(μ4‐4,4′‐oxydibenzoato‐κ4O:O′:O′′:O′′′)dizinc] tetrahydrate], {[Zn2(C14H8O5)2(C12H12N2)]·4H2O}n, has been prepared by the solvothermal assembly of Zn(NO3)2·6H2O, 4,4′‐oxydi(benzoic acid) and 3,3′‐dimethyl‐4,4′‐bipyridine. The two ZnII atoms adopt the same five‐coordinated distorted square‐pyramidal geometry (i.e. ZnO4N), bonding to four O atoms from four different 4,4′‐oxydibenzoate (oba) ligands and one N atom from a 3,3′‐dimethyl‐4,4′‐bipyridine (dmbpy) ligand. The supramolecular secondary building unit (SBU) is a paddle‐wheel [Zn2(COO)4] unit and these units are linked by oba ligands within the layer to form a two‐dimensional net parallel to the b axis, with the dmbpy ligands pointing alternately up and down, which is further extended by dmbpy ligands to form a three‐dimensional framework with rob topology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K and is stable in aqueous solutions in the pH range 5–9. Excitation and luminescence data observed at room temperature show that it emits a bright‐blue fluorescence.  相似文献   

3.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

4.
The structures of coordination polymers are strongly influenced by the organic ligands and metal ions used for their construction, so it is important to choose suitable ligands and metal ions and appropriate synthetic processes. Two novel d10 coordination polymers, namely poly[[diaquabis(2,2′‐bipyridine)[μ4‐4,4′‐(1,4‐phenylenedioxy)bis(benzene‐1,2‐dicarboxylato)]dizinc(II)] dihydrate], {[Zn2(C22H10O10)(C10H8N2)2(H2O)2]·2H2O}n, (1), and poly[[diaquabis(1,10‐phenanthroline)[μ4‐4,4′‐(1,4‐phenylenedioxy)bis(benzene‐1,2‐dicarboxylato)]dicadmium(II)] dimethylformamide disolvate], {[Cd2(C22H10O10)(C12H8N2)2(H2O)2]·2C3H7NO}n, (2), have been synthesized from 4,4′‐(1,4‐phenylenedioxy)bis(benzene‐1,2‐dicarboxylic acid) (H4L) and two different N‐containing auxiliary ligands through a mixed‐ligand synthetic strategy under a solvothermal environment. The structures were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, elemental analysis and IR spectroscopy. Compounds (1) and (2) both present one‐dimensional chain structures and two‐dimensional supramolecular layer structures constructed by weak hydrogen bonds. It is interesting to note that the carboxylate ligands reveal stable trans configurations in both compounds. The fluorescence properties of (1) and (2) in the solid state were also investigated.  相似文献   

5.
In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2‐1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene‐κ2N:N′](μ3‐naphthalene‐1,4‐dicarboxylato‐κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self‐assembly of Zn(NO3)2·6H2O, naphthalene‐1,4‐dicarboxylic acid (1,4‐H2ndc) and 1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene (3,3′‐bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. Each ZnII ion is six‐coordinated by four O atoms from three 1,4‐ndc2− ligands and by two N atoms from two 3,3′‐bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4‐ndc2− ligands, leading to the formation of a two‐dimensional square lattice ( sql ) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′‐bphte bridges, generating a three‐dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6‐connected node and the 1,4‐ndc2− and 3,3′‐bphte ligands are regarded as linkers, the structure can be simplified as a unique three‐dimensional 6‐connected framework with the point symbol 446108. The thermal stability and solid‐state photoluminescence properties have also been investigated.  相似文献   

6.
The title compound, [CoII(C10H8O6)(C10H8N2)(H2O)2]n, was obtained by the hydro­thermal reaction of CoSO4 with benzene‐1,4‐dioxy­di­acetate [systematic name: p‐phenyl­ene­bis­(oxy­acetate)] and 4,4′‐bi­pyridine (4,4′‐bpy). The Co atom lies at an inversion center and the benzene‐1,4‐dioxydiacetate and 4,4′‐bipyridine moieties lie about other inversion centers. The benzene‐1,4‐dioxydiacetate ligands bridge the octahedral CoII coordination centers, forming a one‐dimensional zigzag chain. The chains are further bridged by 4,4′‐bpy ligands, forming a novel two‐dimensional supramolecular architecture. Hydro­gen‐bonding interactions between the coordinated water mol­ecules and the carboxyl­ate O atoms lead to the formation of a three‐dimensional network structure.  相似文献   

7.
In the title coordination compound, [Zn(C12H6O4)(C14H14N4)]n, the two ZnII centers exhibit different coordination environments. One ZnII center is four‐coordinated in a distorted tetrahedral environment surrounded by two carboxylate O atoms from two different naphthalene‐1,4‐dicarboxylate (1,4‐ndc) anions and two N atoms from two distinct 1,4‐bis(imidazol‐1‐ylmethyl)benzene (1,4‐bix) ligands. The coordination of the second ZnII center comprises two N atoms from two different 1,4‐bix ligands and three carboxylate O atoms from two different 1,4‐ndc ligands in a highly distorted square‐pyramidal environment. The 1,4‐bix ligand and the 1,4‐ndc anion link adjacent ZnII centers into a two‐dimensional four‐connected (4,4) network. The two (4,4) networks are interpenetrated in a parallel mode.  相似文献   

8.
The 2‐methylbiphenyl‐4,4′‐dicarboxylate (mbpdc2−) ligand has versatile coordination modes and can be used to construct multinuclear structures. Despite this, reports of the synthesis of coordination complexes involving this ligand are scarce. The title compound, poly[[triaquadi‐μ3‐hydroxido‐hexakis(μ4‐2‐methylbiphenyl‐4,4′‐dicarboxylato)calcium(II)hexazinc(II)] monohydrate], {[CaZn6(C15H10O4)6(OH)2(H2O)3]·H2O}n , has been prepared by the hydrothermal assembly of Zn(NO3)2·6H2O, CaCl2 and 2‐methylbiphenyl‐4,4′‐dicarboxylic acid. Two ZnII atoms adopt a four‐coordinated distorted tetrahedral geometry by bonding to three O atoms from three different 2‐methylbiphenyl‐4,4′‐dicarboxylate (mbpdc2−) dianionic ligands and one bridging hydroxide O atom. For the remaining ZnII atom, a five‐coordinate environment is completed half the time by one carboxylate O atom, and then the same carboxylate O atom and an aqua O atom are present the other half of the time, giving a six‐coordinate environment. The CaII atom is coordinated by six O atoms to give an octahedral coordination geometry. The supramolecular secondary building unit (SBU) is a hamburger‐like heptanuclear unit (Zn6CaO30) and these units are interconnected through mbpdc2− carboxylate groups to generate a three‐dimensional framework with the pcu topology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K. The excitation and luminescence data showed the emission of a bright‐blue fluorescence.  相似文献   

9.
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA.  相似文献   

10.
The title compound, catena‐poly[[tris(μ‐4‐methylbenzoato)‐κ2O:O4O:O′‐(4‐methylbenzoato‐κ2O,O′)dizinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn2(C8H7O2)4(C10H8N2)]n, is a novel coordination polymer. The asymmetric unit contains two unique ZnII ions, four 4‐methylbenzoate ligands and one 4,4′‐bipyridine (4,4′‐bpy) ligand, all in general positions. The four 4‐methylbenzoate ligands link the two ZnII centres to form a dinuclear unit, with a Zn...Zn separation of 3.188 (2) Å, which can be regarded as a supramolecular secondary building unit (SBU). These SBUs are further bridged by 4,4′‐bpy ligands, forming a novel one‐dimensional infinite chain. There are π–π stacking interactions between the benzene rings of the 4‐methylbenzoate ligands and the pyridyl rings of the 4,4′‐bpy ligands, leading to the formation of a corrugated layer. These layers are further assembled via C—H...O hydrogen bonds into a three‐dimensional supramolecular network structure. Coordination polymers such as the title compound are of interest for their potential applications as functional materials.  相似文献   

11.
Co‐crystallization of hemimellitic acid (benzene‐1,2,3‐tricarboxylic acid) dihydrate (H3HMA·2H2O) with 4,4′‐bipyridine (4,4′‐bpy) affords the 1:1 co‐crystal benzene‐1,2,3‐tricarboxylic acid–4,4′‐bipyridine (1/1), H3HMA·4,4′‐bpy or C9H6O6·C10H8N2. Strong O—H⋯O hydrogen bonds connect the acid mol­ecules to form a one‐dimensional zigzag chain, around which the 4,4′‐bpy components are fixed as arms via O—H⋯N inter­actions, resulting in a ladder motif. Through weak C—H⋯O non‐covalent forces, the resulting acid layers are extended into a three‐dimensional pillar‐layered architecture supported by rod‐like 4,4′‐bpy components. The influence on hydrogen‐bonding models is also discussed, with the discovery of an unexpected inter­action motif that does not follow the routine hydrogen‐bonded hierarchical rule in the construction of an acid–base co‐crystal.  相似文献   

12.
Coordination polymers constructed from conjugated organic ligands and metal ions with a d10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII‐based coordination polymer, namely poly[aqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)(μ2‐4,4′‐bipyridine)dizinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2]n or [Zn2(m,m‐bpta)(4,4′‐bipy)(H2O)2]n, was synthesized from a mixture of biphenyl‐3,3′,5,5′‐tetracarboxylic acid [H4(m,m‐bpta)], 4,4′‐bipyridine (4,4′‐bipy) and Zn(NO3)2·6H2O under solvothermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis, and features a μ6‐coordination mode. The ZnII ions adopt square‐pyramidal geometries and are bridged by two synsyn carboxylate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m‐bpta)4? ligands to produce a two‐dimensional grid‐like layer that exhibits a stair‐like structure along the a axis. Adjacent layers are linked by 4,4′‐bipy ligands to form a three‐dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.  相似文献   

13.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

14.
In the presence of water, benzene‐1,4‐diboronic acid (1,4‐bdba) and 4,4′‐bipyridine (4,4′‐bpy) form a cocrystal of composition (1,4‐bdba)(4,4′‐bpy)2(H2O)2, in which the molecular components are organized in two, so far unknown, cyclophane‐type hydrogen‐bonding patterns. The asymmetric unit of the title compound, C6H8B2O4·2C10H8N2·2H2O, contains two 4,4′‐bpy, two water molecules and two halves of 1,4‐bdba molecules arranged around crystallographic inversion centers. The occurrence of O—H...O and O—H...N hydrogen bonds involving the water molecules and all O atoms of boronic acid gives rise to a two‐dimensional hydrogen‐bonded layer structure that develops parallel to the (01) plane. This supramolecular organization is reinforced by π–π interactions between symmetry‐related 4,4′‐bpy molecules.  相似文献   

15.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

16.
Hydrothermal reactions of Cd(OAc)2 · 2H2O with 1,2‐naphthalic anhydride in the absence/presence of different rigid/flexible bis(pyridyl) co‐ligands, produce three distinct coordination polymers, namely [Cd(ndc)]n ( 1 ), {[Cd5(ndc)4(bpp)2(OH)2](H2O)4}n ( 2 ), and [Cd5(ndc)4(bpy)2(OH)2]n ( 3 ) [ndc = 1,2‐naphthalenedicarboxylate, bpp = 1,3‐bis(4‐pyridyl)propane, and bpy = 4,4′‐bipyridine]. Complex 1 contains dinuclear [Cd2O2] clusters as secondary building units (SBUs) and shows a two‐dimensional (2D) kgd network. Complexes 2 and 3 possess one‐dimensional (1D) chains based on pentanuclear [Cd53‐OH)2(COO)2] units as SBUs, which are further extended to afford 2D sql sheet via flexible bpp in 2 and three‐dimensional (3D) pcu network via rigid bpy in 3 , respectively. The structural diversities indicate that the bis(pyridyl) co‐ligands with different flexibility play a key role on the formation of the final supramolecular structures. The complexes were characterized by X‐ray crystallographic, IR, elemental, thermal stability, and powder X‐ray diffraction analyses. In addition, the photoluminescent properties in solid state were also investigated.  相似文献   

17.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

18.
Starting from the proposed zinc carboxylate cluster tetrakis(μ‐2‐propylpentanoato)dizinc(II), Zn22‐valp)4 ( I ), of valproic acid, a branched short‐chain fatty acid, and bipyridine ligands, two new mixed‐ligand coordination compounds, namely, bis(2,2′‐bipyridine)di‐μ3‐hydroxido‐hexakis(μ‐2‐propylpentanoato)bis(2‐propylpentanoato)pentazinc(II), [Zn5(C8H15O2)8(OH)2(C10H8N2)2] ( II ), and poly[[bis(μ‐4,4′‐bipyridine)di‐μ3‐hydroxido‐octakis(μ‐2‐propylpentanoato)bis(2‐propylpentanoato)hexazinc(II)] dimethylformamide disolvate], {[Zn6(C8H15O2)10(OH)2(C10H8N2)2]·2C3H7NO}n ( III ), were synthesized. Compound II is a core‐shell‐type zero‐dimensional discrete Zn53‐OH)2 metal–organic cluster with Zn ions in double‐triangle arrangements that share one Zn ion coincident with an inversion centre. The cluster contains three crystallographically non‐equivalent Zn ions exhibiting three different coordination geometries (tetrahedral, square pyramidal and octahedral). The cluster cores are well separated and embedded in a protective shell of the aliphatic branched short chains of valproate. As a result, there is no specific interaction between the discrete clusters. Conversely, compound III , a 2D layered coordination network with a secondary building unit (SBU), is formed by Zn63‐OH)2 clusters exhibiting a chair‐like hexagonal arrangement. This SBU is formed from two Zn33‐OH) trimers related by inversion symmetry and connected by two syn–anti bridging carboxylate groups. Each SBU is connected by four 4,4′‐bipyridine ligands producing a 63‐hcb net topology. 2D coordination layers are sandwiched within layers of dimethylformamide molecules that do not interact strongly with the network due to the hydrophobic protection provided by the valproate ligands.  相似文献   

19.
The title dicadmium compound, [Cd2(C10H8N2)5(H2O)6](C7H6NO2)2(ClO4)2·2H2O, is located around an inversion centre. Each CdII centre is coordinated by three N atoms from three different 4,4′‐bipyridine ligands and three O atoms from three coordinating water molecules in a distorted octahedral coordination environment. In the dicadmium cation unit, one 4,4′‐bipyridine (4,4′‐bipy) molecule acts as a bidentate bridging ligand between two Cd metal ions, while the other four 4,4′‐bipy molecules act only as monodentate terminal ligands, resulting in a rare `H‐type' [Cd2(C10H8N2)5(H2O)6] host unit. These host units are connected to each other viaπ–π stacking interactions, giving rise to a three‐dimensional supramolecular grid network with large cavities. The 3‐aminobenzoate anions, perchlorate anions and water molecules are encapsulated in the cavities by numerous hydrogen‐bonding interactions. To the best of our knowledge, this is the first example of a coordination compound based on both 4,4′‐bipyridine ligands together with discrete 3‐aminobenzoate anions.  相似文献   

20.
A metal–organic framework with a novel topology, poly[sesqui(μ2‐4,4′‐bipyridine)bis(dimethylformamide)bis(μ4‐4,4′,4′′‐nitrilotribenzoato)trizinc(II)], [Zn3(C21H12NO6)2(C10H8N2)1.5(C3H7NO)2]n, was obtained by the solvothermal method using 4,4′,4′′‐nitrilotribenzoic acid and 4,4′‐bipyridine (bipy). The structure, determined by single‐crystal X‐ray diffraction analysis, possesses three kinds of crystallographically independent ZnII cations, as well as binuclear Zn2(COO)4(bipy)2 paddle‐wheel clusters, and can be reduced to a novel topology of a (3,3,6)‐connected 3‐nodal net, with the Schläfli symbol {5.62}4{52.6}4{58.87} according to the topological analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号