首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the title compound, [Mn(C5H2N2O4)(H2O)2]n, the MnII ion has a distorted octahedral geometry and the 4‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (Hiso2−) anion acts as a μ34‐bridging ligand. Two oxo O atoms from different Hiso2− ligands bridge two MnII ions, forming centrosymmetric dinuclear building blocks. Each dinuclear building block interacts with another four by the coordination of the oxide groups and carboxylate O atoms, producing a two‐dimensional framework in the ab plane. Hydrogen bonds further extend the two‐dimensional sheets into a three‐dimensional supramolecular framework.  相似文献   

2.
A novel three‐dimensional ZnII complex, poly[aqua(μ4‐5‐carboxylato‐1‐carboxylatomethyl‐2‐oxidopyridinium)zinc(II)], [Zn(C8H5NO4)(H2O)]n, has been prepared by hydrothermal assembly of Zn(CH3COO)2·2H2O and 5‐carboxy‐1‐(carboxymethyl)pyridin‐1‐ium‐2‐olate (H2ccop). The ccop2− anions bridge the ZnII cations in a head‐to‐tail fashion via monodentate aromatic carboxylate and phenolate O atoms to form an extended zigzag chain which runs parallel to the [011] direction. One O atom of the aliphatic carboxylate group of the ccop2− ligand coordinates to the ZnII atom of a neighbouring chain thereby producing undulating layers which lie parallel to the (01) plane. A similar parallel undulating planar structure can be obtained if a path involving the other O atom of the aliphatic carboxylate group is considered. Thus, the aliphatic carboxylate group acts in a bridging bidentate mode to give extended –Zn–O–C–O–Zn– sequences running parallel to [001] which link the layers into an overall three‐dimensional framework. The three‐dimensional framework can be simplified as a 4‐connected sra topology with a Schläfli symbol of 42.63.8 if all the ZnII centres and ccop2− anions are regarded as tetrahedral 4‐connected nodes. The three‐dimensional luminescence spectrum was measured at room temperature with excitation and emission wavelengths of 344–354 and 360–630 nm, respectively, at intervals of 0.15 and 2 nm, respectively.  相似文献   

3.
The single crystal X‐ray analysis of a novel thiophene‐2,5‐dicarboxylic acid (H2Tda) Manganese(II) coordination polymer, {Mn23‐Tda)2(μ‐H2O)(H2O)2(bipy)]·DMF}n, shows two different types of Mn2+‐ions with environment of Mn1O6 and Mn2O4N2, and the complex is a two‐dimensional polymer as a result of bridging (Tda)2? ligands and by connecting the carboxylate‐ and water‐bridged {Mn2(μ‐Tda)2(μ‐H2O)} nodes.  相似文献   

4.
The title compounds, [Mn(C10H8O6)]n and [Zn(C10H8O6)]n, are isomorphous coordination polymers prepared from 2,5‐dimethoxyterephthalic acid (H2dmt) and the respective metal(II) salts. Both complexes form three‐dimensional metal–organic frameworks with each MII centre bridged by four 2,5‐dimethoxyterephthalate (dmt2−) anions, resulting in the same type of network topology. The asymmetric unit consists of one MII cation on a twofold axis and one half of a dmt2− anion (located on a centre of inversion). In the crystal structure, the MII centres are coordinated in a rather unusual way, as there is a distorted tetrahedral inner coordination sphere formed by four carboxylate O atoms of four different dmt2− anions, and an additional outer coordination sphere formed by two methoxy and two carboxylate O atoms, with each of the O atoms belonging to one of the four different dmt2− anions forming the inner coordination sphere. Consideration of both coordination spheres results in a super‐dodecahedral coordination geometry for the MII centres. Besides the numerous MII...O interactions, both structures are further stabilized by weak C—H...O contacts.  相似文献   

5.
In the title polymer, [Pb(C9H4O6)]n, the asymmetric unit contains a monomer of a PbII cation with a doubly deprotonated 3‐carboxybenzene‐1,2‐dicarboxylate dianion (1,2,3‐Hbtc2−). Each PbII centre is seven‐coordinated by seven O atoms of bridging carboxy/carboxylate groups from five 1,2,3‐Hbtc2− ligands, forming a distorted pentagonal bipyramid. The PbII cations are bridged by 1,2,3‐Hbtc2− anions, yielding two‐dimensional chiral layers. The layers are stacked above each other to generate a three‐dimensional supramolecular architecture via a combination of C—H...O interactions. The thermogravimetric and optical properties are also reported.  相似文献   

6.
A novel neutral polymer, {[Co2(C7H3NO4)2(H2O)4]·2H2O}n, was hydrothermally synthesized using pyridine‐2,5‐dicarboxylate (2,5‐PDC2−) as the organic linker. It features a two‐dimensional layer structure constructed from one‐dimensional {[Co(2,5‐PDC)2]2−}n chains interlinked by [Co(H2O)4]+ units. The two CoII cations occupy special positions, sitting on inversion centres. Each 2,5‐PDC2− anion chelates to one CoII cation via the pyridine N atom and an O atom of the adjacent carboxylate group, and links to two other CoII cations in a bridging mode via the O atoms of the other carboxylate group. In this way, the 2,5‐PDC2− ligand connects three neighbouring CoII centres to form a two‐dimensional network. The two‐dimensional undulating layers are linked by extensive hydrogen bonds to form a three‐dimensional supramolecular structure, with the uncoordinated solvent molecules occupying the interlamellar region.  相似文献   

7.
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine‐coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxylate groups of isonicotinate (IN) and benzene‐1,2‐dicarboxylate (BDC2−) ligands to form La–carboxylate chains, which are further expanded into a three‐dimensional framework with nanometre‐sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta‐ and heptadentate chelating–bridging modes, respectively.  相似文献   

8.
First N‐benzenesulfonyl‐L‐glutamic acid‐bridged manganese(II) coordination polymer [Mn(bipy)(bs‐glu)]n (bs‐glu = N‐benzenesulfonyl‐L‐glutamic acid dianion, bipy = 2, 2′‐bipyridine) has been synthesized and characterized structurally and magnetically. It crystallizes in the orthorhombic space group P212121. The γ‐carboxyl group coordinates to the MnII atom in a chelating mode, while the α‐carboxyl group coordinates in a bidentate‐bridging mode. The complex displays a one‐dimensional double‐chain polymer. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent MnII ions in the compound.  相似文献   

9.
In the title coordination compound, [Mn(C8H10O4)(C14H14N4)(H2O)2]n, each MnII centre occupies an inversion centre. The 1,4‐bis(imidazol‐1‐ylmethyl)benzene (1,4‐bix) ligand and the trans‐cyclohexane‐1,4‐dicarboxylate dianion (chdc) both function in bridging modes, linking adjacent MnII centres into a two‐dimensional four‐connected (4,4) network. These two‐dimensional layers are stacked in a parallel mode. Hydrogen bonds between water molecules and carboxylate O atoms link neighbouring (4,4) networks, yielding a three‐dimensional α‐polonium net.  相似文献   

10.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

11.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

12.
In the title two‐dimensional coordination polymer, [Mn(1,4‐BDOA)(4,4‐bipy)(H2O)2]n [1,4‐BDOA2− is the p‐phenyl­ene­dioxy­di­acetate dianion (C10H8O6) and 4,4‐bipy is 4,4‐bi­pyridine (C10H8N2)], each MnII atom displays octahedral coordination by two O atoms of the 1,4‐BDOA2− groups, two N atoms of the 4,4‐bipy ligands and two solvent water mol­ecules. The MnII atom, 4,4‐bipy ligand and 1,4‐BDOA2− group occupy different inversion centres. Adjacent MnII atoms are bridged by 1,4‐BDOA2− groups and 4,4‐bipy ligands, forming a two‐dimensional network with Mn⋯Mn separations of 11.592 (2) and 11.699 (2) Å. Hydro­gen bonds from a water O—H group link the layers in the third dimension.  相似文献   

13.
The title novel heterometallic 3d–4f coordination polymer, {[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2O}n, has a three‐dimensional metal–organic framework composed of two types of metal atoms (one CuII and two ErIII) and two types of bridging anionic ligands [3,5‐dicarboxylatopyrazolate(3−) (ptc3−) and oxalate]. The CuII atom is four‐coordinated in a square geometry. The ErIII atoms are both eight‐coordinated, but the geometries at the two atoms appear different, viz. triangular dodecahedral and bicapped trigonal prismatic. One of the oxalate anions is located on a twofold axis and the other lies about an inversion centre. Both oxalate anions act as bis‐bidentate ligands bridging the latter type of Er atoms in parallel zigzag chains. The pdc3− anions act as quinquedentate ligands not only chelating the CuII and the triangular dodecahedral ErIII centres in a bis‐bidentate bridging mode, but also connecting to ErIII centres of both types in a monodentate bridging mode. Thus, a three‐dimensional metal–organic framework is generated, and hydrogen bonds link the metal–organic framework with the uncoordinated water molecules. This study describes the first example of a three‐dimensional 3d–4f coordination polymer based on pyrazole‐3,5‐dicarboxylate and oxalate, and therefore demonstrates further the usefulness of pyrazoledicarboxylate as a versatile multidentate ligand for constructing heterometallic 3d–4f coordination polymers with interesting architectures.  相似文献   

14.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

15.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

16.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

17.
In the title coordination polymer, [Pb(C14H8N2O4)(CH3OH)2]n, the asymmetric unit contains half of a PbII cation, half of a 2,2′‐(diazene‐1,2‐diyl)dibenzoate dianionic ligand (denoted L2−) and one methanol ligand. Each PbII centre is eight‐coordinated by six O atoms of chelating/bridging carboxylate groups from four L2− ligands and two O atoms from two terminal methanol ligands, forming a distorted dodecahedron. The [PbL2(MeOH)2] subunits are interlinked via the sharing of two carboxylate O atoms to form a one‐dimensional [PbL2(MeOH)2]n chain. Adjacent chains are further connected by L2− ligands, giving rise to a two‐dimensional layer, and these layers are bridged by L2− linkers to afford a three‐dimensional framework with a 41263 topology.  相似文献   

18.
The solvothermal reaction of MnCl2·H2O and 5‐methoxybenzene‐1,3‐dicarboxylic acid (MeO‐m‐H2BDC) led to a three‐dimensional MnII metal–organic framework, namely poly[(dimethylformamide‐κO)(μ4‐5‐methoxybenzene‐1,3‐dicarboxylato‐κ4O1:O1′:O3,O3′:O3)manganese(II)], [Mn(C9H6O5)(C3H7NO)]n or [Mn(MeO‐m‐BDC)(DMF)]n (DMF is dimethylformamide). The MnII atom is six‐coordinated and exhibits a distorted octahedral geometry formed by five carboxylate O atoms from four different MeO‐m‐BDC2− anionic ligands and by one DMF O atom. The three‐dimensional framework of (I) formed by the bridging MeO‐m‐BDC2− ligands and the MnII atoms exhibits a pts topological network when MeO‐m‐BDC2− and MnII are viewed as four‐connected nodes.  相似文献   

19.
In the title mixed‐ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdII atom, one doubly deprotonated 4,4′‐sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdII centre is six‐coordinated by two O atoms from a chelating carboxylate group of a SDBA2− ligand, two O atoms from monodentate carboxylate groups of two different SDBA2− ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2− ligand, with one in a μ1‐η11 chelating mode and the other in a μ2‐η11 bis‐monodentate mode. Single‐crystal X‐ray diffraction analysis revealed that the title compound is a one‐dimensional double‐chain polymer containing 28‐membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair‐shaped water hexamer cluster is observed in the compound.  相似文献   

20.
The title CdII coordination framework, [Cd(C15H8O5)(H2O)]n or [Cd(bpdc)(H2O)]n [H2bpdc is 2‐(4‐carboxybenzoyl)benzoic acid], has been prepared and characterized using IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Each CdII centre is six‐coordinated by two O atoms from one 2‐(4‐carboxylatobenzoyl)benzoate (bpdc2−) ligand in chelating mode, three O‐donor atoms from three other bpdc2− anions and one O atom from a coordinated water molecule in an octahedral coordination environment. Two crystallographically equivalent CdII cations are bridged by one O atom of the 2‐carboxylate group of one bpdc2− ligand and by both O atoms of the 4‐carboxylate group of a second bpdc2− ligand to form a binuclear [(Cd)2(O)(OCO)] secondary building unit. Adjacent secondary building units are interlinked to form a one‐dimensional [Cd(OCO)2]n chain. The bpdc2− ligands link these rod‐shaped chains to give rise to a complex two‐dimensional [Cd(bpdc)]n framework with a 4,4‐connected binodal net topology of point symbol {43.62.8}. The compound exhibits a strong fluorescence emission and typical ferroelectric behaviour in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号