首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

2.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

3.
Mixtures of 4‐carboxypyridinium perchlorate or 4‐carboxypyridinium tetrafluoroborate and 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) in ethanol and water solution yielded the title supramolecular salts, C6H6NO2+·ClO4·C12H24O6·2H2O and C6H6NO2+·BF4·C12H24O6·2H2O. Based on their similar crystal symmetries, unit cells and supramolecular assemblies, the salts are essentially isostructural. The asymmetric unit in each structure includes one protonated isonicotinic acid cation and one crown ether molecule, which together give a [(C6H6NO2)(18‐crown‐6)]+ supramolecular cation. N—H...O hydrogen bonds between the protonated N atoms and a single O atom of each crown ether result in the 4‐carboxypyridinium cations `perching' on the 18‐crown‐6 molecules. Further hydrogen‐bonding interactions involving the supramolecular cation and both water molecules form a one‐dimensional zigzag chain that propagates along the crystallographic c direction. O—H...O or O—H...F hydrogen bonds between one of the water molecules and the anions fix the anion positions as pendant upon this chain, without further increasing the dimensionality of the supramolecular network.  相似文献   

4.
The mol­ecule of the title compound {systematic name: di‐μ‐sulfido‐bis[di­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octade­cane‐κ6O)barium(II)] bis­[1,2‐benzisothiazol‐3(2H)‐one 1,1‐dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18‐crown‐6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four‐membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown‐ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H?O hydrogen bonds.  相似文献   

5.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

6.
In catena‐poly[[[diaqua­nickel(II)]‐di‐μ‐glycine] dibromide], {[Ni(C2H5NO2)2(H2O)2]Br2}n, (I), the Ni atom is located on an inversion centre. In catena‐poly[[[tetra­aqua­magnesium(II)]‐μ‐glycine] dichloride], {[Mg(C2H5NO2)(H2O)4]Cl2}n, (II), the Mg atom and the non‐H atoms of the glycine mol­ecule are located on a mirror plane. All other atoms are located on general positions. The atomic arrangements of both compounds are characterized by [MO6] octa­hedra (M = Ni or Mg) connected by glycine mol­ecules, with the halogenide ions in the inter­stices. In (I), four of the coordinating O atoms are from glycine and two are from water mol­ecules, building layers of octa­hedra and organic mol­ecules. In (II), two of the coordinating O atoms are from glycine and four are from water mol­ecules. The octa­hedra and organic mol­ecules form chains.  相似文献   

7.
The structure of the title complex, poly[dicaesium(I) hexaaquacobalt(II) [octaaquatetra‐μ‐citrato‐hexacobalt(II)] dodecahydrate], {Cs2[Co(H2O)6][Co6(C6H4O7)4(H2O)8]·12H2O}n, at 100 (1) K is formed by layers of a square two‐dimensional polymer composed of CoII citrate cubanes bridged by magnetically active six‐coordinate CoII cations. The polymer has plane symmetry p4mm in the c‐axis projection. The cubanes reside on sites of crystallographic symmetry , while the bridging CoII centres lie on twofold axes. The basic polymeric unit has a charge of 4−, balanced by two Cs+ and a [Co(H2O)6]2+ (symmetry ) cation, which lie in channels between the polymeric layers. Unligated water molecules, of which there are 12 per cubane, enter into an extended intralayer and layer‐bridging hydrogen‐bond pattern, which can be described in detail even though not all of the H atoms of the water molecules were located.  相似文献   

8.
In the title compound, 2C9H6N2O2·C12H24O6·4H2O, the 18‐crown‐6 (1,4,7,10,13,16‐hexaoxacyclooctadecane) molecule resides across a centre of inversion. The adduct exists as a molecular hydrogen‐bonded complex featuring integration of two kinds of synthons, viz. [(18‐crown‐6)(H2O)4] [O...O = 2.8645 (18)–2.9014 (18) Å] and an oxime/aqua ensemble, PhC(O)C(CN)NOH...OH2 [O...O = 2.5930 (18) Å]. The reliability of the oxime/aqua motif, sustained by the highly acidic cyanooxime, is an essential factor in the construction of multicomponent cocrystals and the accommodation of oxime species in macrocyclic hosts. The supramolecular structure is generated by the alternation of hydrophilic [(18‐crown‐6)(H2O)4] layers and bilayers of benzoyl(hydroxyimino)acetonitrile molecules, resulting in stacking interactions between the phenyl and cyano groups of 3.666 (2) Å.  相似文献   

9.
In the title compound, (1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐1κ6O)‐μ‐oxo‐1:2κ2O:O‐hexa­kis(tetra­hydro­borato)‐1κ3H;2κ2H;2κ2H;2κ3H;2κ3H;2κ3H‐diuranium(IV), [U2(BH4)6O(C12H24O6)], one of the U atoms (U1), located at the centre of the crown ether moiety, is bound to the six ether O atoms, and also to a tridentate tetra­hydro­borate group and a μ‐oxo atom in axial positions. The other U atom (U2) is bound to the same oxo group and to five tetra­hydro­borate moieties, three of them tridentate and the other two bidentate. The two metal centres are bridged by the μ‐oxo atom in an asymmetric fashion, thus giving the species (18‐crown‐6)(κ3‐BH4)U=(μ‐O)—U(κ3‐BH4)32‐BH4)2, in which the U1=O and U2—O bond lengths to the μ‐O atom [1.979 (5) and 2.187 (5) Å, respectively] are indicative of the presence of positive and negative partial charges on U1 and U2, respectively.  相似文献   

10.
The compounds catena‐poly[p‐phenyl­enediammonium [[diiodo­lead(II)]‐di‐μ‐iodo] dihydrate], {(C6H10N2)[PbI4]·2H2O}n, (I), and catena‐poly[bis­(3,5‐dimethyl­anilinium) [[diiodo­lead(II)]‐di‐μ‐iodo]], {(C8H12N)2[PbI4]}n, (II), crystallize as organic–inorganic hybrids. As such, the structures consist of chains of [PbI2] units extending along the c axis in (I) and along the b axis in (II). The asymmetric unit in (I) contains one Pb atom on a site of 2/m symmetry, two I atoms and a water molecule on mirror planes, and a p‐phenyl­enediammonium mol­ecule that sits around a site of 2/m symmetry with the C and N atoms on a mirror plane. In (II), the Pb atom is on a twofold axis and the two I atoms are on general positions. Each Pb atom is octa­hedrally coordinated to six I atoms, arranged as chains of edge‐sharing octa­hedra. Both compounds undergo hydrogen‐bonding inter­actions between the ammonium groups and the I atoms. In addition, there are hydrogen bonds between the water mol­ecules and the ammonium groups and halides in (I), and between the ammonium groups and the ring systems in (II).  相似文献   

11.
The title compound, [Nd2(C5H6O4)2(C8H4O4)(H2O)4]·17H2O, obtained via hydrothermal reaction of Nd2O3 with glutaric acid and terephthalic acid, assembles as a three‐dimensional open framework with ten‐coordinate Nd–O polyhedra. The asymmetric part of the unit cell contains half a glutarate anion, a quarter of a terephthalate dianion, half an NdIII cation, one coordinated water molecule and 4.25 solvent water molecules. Each [NdO10] coordination polyhedron is comprised of six O atoms originating from four glutarate anions, two others from a terephthalate carboxylate group, which coordinates in a bidentate fashion, and two from water molecules. The Nd—O distances range from 2.4184 (18) to 2.7463 (18) Å. The coordination polyhedra are interconnected by the glutarate anions, extending as a two‐dimensional layer throughout the bc plane. Individual two‐dimensional layers are interlinked via terephthalate anions along the a axis. This arrangement results in rectangular‐shaped cavities with interstices of approximately 3.5 × 6 × 6.5 Å (approximately 140 Å3), which are occupied by water molecules. The NdIII cations, terephthalate anions, glutarate anions and one of the interstitial water molecules are located on special crystallographic positions. The Nd–terephthalate–Nd units are located across twofold rotation axes parallel to [100], with the NdIII cations located directly on these axes. In addition, the terephthalate anion is bisected by a crystallographic mirror plane perpendicular to that axis, thus creating an inversion centre in the middle of the aromatic ring. The glutarate ligand is bisected by a crystallographic mirror plane perpendicular to (001). One of the solvent water molecules lies on a site of 2/m symmetry, and the symmetry‐imposed disorder of its H atoms extends to the H atoms of the other four solvent water molecules, which are disordered over two equally occupied and mutually exclusive sets of positions.  相似文献   

12.
Crystals from commercial samples of sodium cacodylate trihydrate, NaO2As(CH3)2·3H2O, were analyzed by single‐crystal X‐ray diffraction and two phases were identified, viz. penta‐μ‐aqua‐disodium(I) bis(dimethylarsenate), {[Na2(H2O)5](C2H6AsO2)2}n, (I), and di‐μ‐aqua‐bis[triaquasodium(I)] bis(dimethylarsenate), [Na2(H2O)8](C2H6AsO2)2, (II). Both (I) and (II) form layered structures in which hydrated Na+ ions form layers in the ab plane, the cacodylate ions being located in between the layers. In (I), the two non‐equivalent Na+ ions (located at twofold axes) and the three non‐equivalent aqua ligands (one of which also lies on a twofold axis) form infinite polymeric layers, but in (II), layers of discrete centrosymmetric [Na2(H2O)8]2+ ions are present. One of the commercial samples analyzed contained almost exclusively crystals of the tetrahydrate (II), while another sample consisted of a mixture of the two phases.  相似文献   

13.
In the two compounds (borohydrido)(1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐κ6O)potassium, [K(BH4)(C12H24O6)], (I), and (borohydrido)(1,4,7,10,13,16‐hexa­oxa‐2,3:11,12‐di­benzo­cyclo­octa­deca‐2,11‐diene‐κ6O)(tetra­hydro­furan)­potassium, [K(BH4)(C4H8O)(C20H24O6)], (II), the K atom is bound to the six O atoms of the crown ether and to a tridentate borohydride group, with further coordination to a tetra­hydro­furan mol­ecule in (II). The alkali metal ion environment is thus distorted hexa­gonal–pyramidal in (I) and bipyramidal in (II).  相似文献   

14.
The crystal structure of cobalt vanadophosphate dihydrate {systematic name: poly[diaqua‐μ‐oxido‐μ‐phosphato‐hemicobalt(II)vanadium(II)]}, Co0.50VOPO4·2H2O, shows a three‐dimensional framework assembled from VO5 square pyramids, PO4 tetrahedra and Co[O2(H2O)4] octahedra. The CoII ions have local 4/m symmetry, with the equatorial water molecules in the mirror plane, while the V and apical O atom of the vanadyl group are located on the fourfold rotation axis and the P atoms reside on sites. The PO4 tetrahedra connect the VO5 polyhedra to form a planar P–V–O layer. The [Co(H2O)4]2+ cations link adjacent P–V–O layers via vanadyl O atoms to generate an unprecedented three‐dimensional open framework. Powder diffraction measurements reveal that the framework collapses on removal of the water molecules.  相似文献   

15.
The crystal structure of catena‐poly­[[(6‐carboxy­pyridine‐2‐carb­oxyl­ato‐κ3O,N,O′)­lithium(I)]‐μ‐aqua‐κ2O:O], [Li(C7H4NO4)­(H2O)]n, contains the Li+ ion coordinated to two O atoms and the N atom of the 6‐carboxy­pyridine‐2‐carboxyl­ate ligand, and to two water O atoms, forming a pentavalent coordination geometry. The molecule resides on a mirror plane which contains the Li and N atoms, the para‐CH unit, and the O atom of the coordinated water mol­ecule. The O atom of the water mol­ecule is coordinated to two Li atoms, forming an infinite polymeric chain.  相似文献   

16.
The novel polymeric complexes catena‐poly[[diaquamanganese(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′‐[diaquamanganese(II)]‐bis(μ‐terephthalato‐κ2O1:O4)], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena‐poly[[[aquacopper(II)]‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐copper(II)‐μ‐aqua‐μ‐hydroxido‐μ‐terephthalato‐κ2O1:O1′‐[aquacopper(II)]‐μ‐2,2′‐bipyrimidine‐κ4N1,N1′:N3,N3′] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O}n, (II), containing bridging 2,2′‐bipyrimidine (bpym) ligands coordinated as bis‐chelates, have been prepared via a ligand‐exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht2−) anions were found. In (I), two tpht2− anions acting as bis‐monodentate ligands bridge the MnII centres in a parallel fashion. In (II), the tpht2− anions act as endo‐bridges and connect two CuII centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]·4H2O coordination entity in (II) build up one‐dimensional polymeric chains along the b axis. In (I), the MnII cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central CuII cation is also on a special position (site symmetry ). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face‐to‐face π–π interactions [in (I)], forming three‐dimensional metal–organic frameworks. The MnII cation in (I) has a trigonally deformed octahedral geometry, whereas the CuII cations in (II) are in distorted octahedral environments. The CuII polyhedra are inclined relative to each other and share common edges.  相似文献   

17.
Crystals of the title compound, di­aqua­hexa‐μ‐cyano‐ferrate(III)­praseo­dym­ium(III) dihydrate, Pr[Fe(CN)6]·4H2O or [PrFe(CN)6(H2O)2]·2H2O, are twinned with three components. The Pr atom is coordinated by eight atoms, viz. six N and two symmetry‐related water O atoms. The Pr polyhedron (Pr has site symmetry m2m, Wyckoff position 4c) is linked to an FeC6 octahedron (Fe located on a site with imposed 2/m symmetry, Wyckoff position 4b) through N atoms, forming an infinite array. The second (symmetry independent) water mol­ecule lies on a mirror plane, is not included in coordination and is weakly hydrogen bonded to N atoms.  相似文献   

18.
The structures of the two novel title compounds, Rb2[CrCl5(H2O)], (I), and Cs2[CrCl5(H2O)], (II), have been determined by single‐crystal X‐ray diffraction. Compounds (I) and (II) crystallize with Pnma and Cmcm symmetry, respectively. In (I), the Cr, three Cl and water O atom lie on a mirror plane; in (II), the Cs, Cr, O and one of the Cl atoms are at sites with m2m symmetry. The chromate anions are in a pseudo‐cubic environment of eight Rb+ cations in (I) and in a pseudo‐octahedral environment of six Cs+ cations in (II). The structural arrangement correlates with the ranion/rcation radius ratio.  相似文献   

19.
The title compound, dicaesium(I)‐μ‐thio­cyanato‐κ2N:S‐zinc(II)‐tetra‐μ‐thio­cyanato‐κ2S:N‐argentate(I), crystallizes in the orthorhombic space group Pmn21 and contains units of composition AgZn(SCN)3 lying on a mirror plane and bonded together through Cs+ ions and thio­cyanate groups. The crystal studied contained equal numbers of inversion twins.  相似文献   

20.
The title compound, bis(2,4‐dinitrophenolato‐κ2O,O′)(1,4,7,10,13,16‐hexaoxadecane‐κ6O)barium(II), [Ba(C6H3N2O5)2(C12H24O6)], is a 1:1 complex of barium(II)–2,4‐di­nitro­phenolate and 1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane (18‐crown‐6). Its structure is located on a crystallographic inversion centre. The temperature dependence of the crystal structure has been studied. The monoclinic β angle of the P21n space group increases with increasing temperature. The packing structure of the complex is stabilized by intermolecular C—H?O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号