首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood–brain barrier (BBB) restricts access to the brain of more than 98 % of therapeutic agents and is largely responsible for treatment failure of glioblastoma multiforme (GBM). Therefore, it is of great importance to develop a safe and efficient strategy for more effective drug delivery across the BBB into the brain. Inspired by the extraordinary capability of rabies virus (RABV) to enter the central nervous system, we report the development and evaluation of the metal–organic framework‐based nanocarrier MILB@LR, which closely mimicked both the bullet‐shape structure and surface functions of natural RABV. MILB@LR benefited from a more comprehensive RABV‐mimic strategy than mimicking individual features of RABV and exhibited significantly enhanced BBB penetration and brain tumor targeting. MILB@LR also displayed superior inhibition of tumor growth when loaded with oxaliplatin. The results demonstrated that MILB@LR may be valuable for GBM targeting and treatment.  相似文献   

2.
Heterometallic metal–organic frameworks (MOFs) allow the precise placement of various metals at atomic precision within a porous framework. This new level of control by MOFs promises fascinating advances in basic science and application. However, the rational design and synthesis of heterometallic MOFs remains a challenge due to the complexity of the heterometallic systems. Herein, we show that bimetallic MOFs with MX2(INA)4 moieties (INA=isonicotinate; M=Co2+ or Fe2+; X=OH?, Cl?, Br?, I?, NCS?, or NCSe?) can be generated by the sequential modification of a Zr‐based MOF. This multi‐step modification not only replaced the linear organic linker with a square planar MX2(INA)4 unit, but also altered the symmetry, unit cell, and topology of the parent structure. Single‐crystal to single‐crystal transformation is realized so that snapshots for transition process were captured by successive single‐crystal X‐ray diffraction. Furthermore, the installation of Co(NCS)2(INA)4 endows field‐induced slow magnetic relaxation property to the diamagnetic Zr‐MOF.  相似文献   

3.
The title compound, C39H30O6·CDCl3, has a chemical threefold axis and an approximately planar structure, with an ethoxycarbonyl substituent on each of the terminal benzenes oriented in the same direction, thus forming a propeller‐shaped molecule. This molecule is of particular interest in the field of metal–organic frameworks (MOFs), where its hydrolyzed analogue forms MOF structures with high surface areas. The benzene ring which occupies the centre of the molecule forms π–π interactions to the equivalent benzene ring at a perpendicular distance of 3.32 (1) Å. Centrosymmetric dimers formed in this way are interconnected by intermolecular C—H...π interactions with a rather short H...CgA distance of 2.51 Å (CgA is the centroid of the central benzene ring). The molecules are arranged in regular parallel sheets. Within a sheet, molecules are interconnected via C—H...O interactions where all carbonyl O atoms participate in weak hydrogen bonds as hydrogen‐bond acceptors. Neighbouring sheets are connected through the above‐mentioned π–π and C—H...π interactions.  相似文献   

4.
The rational design of metal–organic frameworks (MOFs) with hollow features and tunable porosity at the nanoscale can enhance their intrinsic properties and stimulates increasing attentions. In this Communication, we demonstrate that methanol can affect the coordination mode of ZIF‐67 in the presence of Co2+ and induces a mild phase transformation under solvothermal conditions. By applying this transformation process to the ZIF‐67@ZIF‐8 core–shell structures, a well‐defined hollow Zn/Co ZIF rhombic dodecahedron can be obtained. The manufacturing of hollow MOFs enables us to prepare a noble metal@MOF yolk‐shell composite with controlled spatial distribution and morphology. The enhanced gas storage and porous confinement that originate from the hollow interior and coating of ZIF‐8 confers this unique catalyst with superior activity and selectivity toward the semi‐hydrogenation of acetylene.  相似文献   

5.
6.
Zr‐based mesoporous metal–organic frameworks (mesoMOFs) with uniform mesochannels and crystallized microporous framework were constructed in a water‐based system using amphoteric surfactants as templates. Aqueous‐phase synthesis guaranteed the formation of rod‐shaped surfactant micelles. Meanwhile, the carboxylate groups of amphoteric surfactants provided the anchoring to bridge Zr‐oxo clusters and surfactant assemblies. As a result, the directed crystallization of MOFs proceeded around cylindrical micelles and the hierarchical micro‐ and mesostructure was produced. The dimensions of mesopores were easily tailored by changing the alkyl chain length of the applied surfactants. The included surfactant was effectively extracted thanks to the exceptional stability of the obtained Zr‐based mesoMOFs. The almost complete occupation of the mesopore by cytochrome c exemplifies the accessibility of the mesochannels, suggesting the potential applications of the obtained mesoMOFs with bulky molecules.  相似文献   

7.
Two pillared‐layer metal–organic frameworks (MOFs; PMOF‐55 and NH2‐PMOF‐55) based on 1,2,4‐triazole and terephthalic acid (bdc)/NH2‐bdc ligands were assembled and display framework stabilities, to a certain degree, in both acid/alkaline solutions and toward water. They exhibit high CO2 uptakes and selective CO2/N2 adsorption capacities, with CO2/N2 selectivity in the range of 24–27, as calculated by the ideal adsorbed solution theory method. More remarkably, the site and interactions between the host network and the CO2 molecules were investigated by single‐crystal X‐ray diffraction, which showed that the main interaction between the CO2 molecules and PMOF‐55 is due to multipoint supramolecular interactions of C?H???O, C???O, and O???O. Amino functional groups were shown to enhance the CO2 adsorption and identified as strong adsorption sites for CO2 by X‐ray crystallography.  相似文献   

8.
Electrocatalytic reduction of CO2 to a single product at high current densities and efficiencies remains a challenge. However, the conventional electrode preparation methods, such as drop‐casting, usually suffer from low intrinsic activity. Herein, we report a synthesis strategy for preparing heterogeneous electrocatalyst composed of 3D hierarchical Cu dendrites that derived from an in situ electrosynthesized hollow copper metal–organic framework (MOF), for which the preparation of the Cu‐MOF film took only 5 min. The synthesis strategy preferentially exposes active sites, which favor's the reduction of CO2 to formate. The current density could be as high as 102.1 mA cm?2 with a selectivity of 98.2 % in ionic‐liquid‐based electrolyte and a commonly used H‐type cell.  相似文献   

9.
A new family of resorcin[4]arene‐based metal–organic frameworks (MOFs), namely, [Eu(HL)(DMF)(H2O)2] ? 3 H2O ( 1 ), [Tb(HL)(DMF)(H2O)2] 3 H2O ( 2 ), [Cd4(L)2(DMF)4(H2O)2] 3 H2O ( 3 ) and [Zn3(HL)2(H2O)2] 2 DMF ? 7 H2O ( 4 ), have been constructed from a new resorcin[4]arene‐functionalized tetracarboxylic acid (H4L=2,8,14,20‐tetra‐ethyl‐6,12,18,24‐tetra‐methoxy‐4,10,16,22‐tetra‐carboxy‐methoxy‐calix[4]arene). Isostructural 1 and 2 exhibit charming 1D motifs built with the cup‐like HL3? anions and rare earth cations. Compounds 3 and 4 show a unique sandwich‐based 2D layer and a fascinating 3D framework, respectively. Remarkably, compounds 1 and 2 display intensive red and green emissions triggered by the efficient antenna effect of organic ligands under UV light. More importantly, systematic luminescence studies demonstrate that Ln‐MOFs 1 and 2 , as efficient multifunctional fluorescent materials, show highly selective and sensitive sensing of Fe3+, polyoxometalates (POMs), and acetone, which represents a rare example of a sensor for quantitatively detecting three different types of analytes. This is also an exceedingly rare example of Fe3+ and POMs detection in aqueous solutions employing resorcin[4]arene‐based luminescent Ln‐MOFs. Furthermore, the possible mechanism of the sensing properties is deduced.  相似文献   

10.
The influence of the constitutive dicarboxylate linkers (size, functional group) over the crystallization kinetics of a series of porous Zr metal–organic frameworks with the UiO‐66 topology has been investigated by in situ time‐resolved energy dispersive X‐ray diffraction (EDXRD). Both large aromatic spacers (2,6‐naphthalene‐, 4,4′‐biphenyl‐ and 3,3′‐dichloro‐4,4′‐azobenzene‐dicarboxylates) and a series of X‐functionalized terephthalates (X=NH2, NO2, Br, CH3) were investigated in dimethylformamide (DMF) at different temperatures and compared with the parent UiO‐66. Using different crystallization models, rate constants and further kinetic parameters (such as activation energy) have been extracted. Finally, the impact of the replacement of the toxic DMF by water on the crystallization kinetics was studied through the synthesis of the functionalized UiO‐66‐NO2 solid.  相似文献   

11.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

12.
A novel three‐dimensional ZnII complex, poly[[(μ2‐4,4′‐bipyridine)(μ4‐naphthalene‐1,4‐dicarboxylato)(μ2‐naphthalene‐1,4‐dicarboxylato)dizinc(II)] dimethylformamide monosolvate monohydrate], {[Zn2(C12H6O4)2(C10H8N2)]·2C3H7NO·H2O)}n, has been prepared by the solvothermal assembly of Zn(NO3)·6H2O, naphthalene‐1,4‐dicarboxylic acid and 4,4′‐bipyridine. The two crystallographically independent Zn atoms adopt the same four‐coordinated tetrahedral geometry (ZnO3N) by bonding to three O atoms from three different naphthalene‐1,4‐dicarboxylate (1,4‐ndc) ligands and one N atom from a 4,4′‐bipyridine (bpy) ligand. The supramolecular secondary building unit (SBU) is a distorted paddle‐wheel‐like {Zn2(COO)2N2O2} unit and these units are linked by 1,4‐ndc ligands within the layer to form a two‐dimensional net parallel to the ab plane, which is further connected by bpy ligands to form the three‐dimensional framework. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound is stable up to 673 K. Excitation and luminescence data observed at room temperature show that it emits bright‐blue fluorescence.  相似文献   

13.
Metal–organic framework (MOF) UiO‐66 thin films are solvothermally grown on conducting substrates. The as‐synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO‐66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox‐active species with different sizes.  相似文献   

14.
15.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

16.
Post‐synthetic ligand exchange in the prototypical zirconium‐based metal–organic framework (MOF) UiO‐66 was investigated by in situ solution 1H NMR spectroscopy. Samples of UiO‐66 having different degrees of defectivity were exchanged using solutions of several terephthalic acid analogues in a range of conditions. Linker exchange only occurred in defect‐free UiO‐66, whereas monocarboxylates grafted at defect sites were found to be preferentially exchanged with respect to terephthalic acid over the whole range of conditions investigated. A 1:1 exchange ratio between the terephthalic acid analogue and modulator was observed, providing evidence that the defects had missing‐cluster nature. Ex situ characterisation of the MOF powders after exchange corroborated these findings and showed that the physical‐chemical properties of the MOF depend on whether the functionalisation occurs at defective sites or on the framework.  相似文献   

17.
Two Ln26@CO3 (Ln=Dy and Tb) cluster‐based lanthanide–transition‐metal–organic frameworks (Ln MOFs) formulated as [Dy26Cu3(Nic)24(CH3COO)8(CO3)11(OH)26(H2O)14]Cl ? 3 H2O ( 1 ; HNic=nicotinic acid) and [Tb26NaAg3(Nic)27(CH3COO)6(CO3)11(OH)26Cl(H2O)15] ? 7.5 H2O ( 2 ) have been successfully synthesized by hydrothermal methods and characterized by IR, thermogravimetric analysis (TGA), elemental analysis, and single X‐ray diffraction. Compound 1 crystallizes in the monoclinic space group Cc with a=35.775(12) Å, b=33.346(11) Å, c=24.424(8) Å, β=93.993(5)°, V=29065(16) Å3, whereas 2 crystallizes in the triclinic space group P with a=20.4929(19) Å, b=24.671(2) Å, c=29.727(3) Å, α=81.9990(10)°, β=88.0830(10)°, γ=89.9940(10)°, V=14875(2) Å3. Structural analysis indicates the framework of 1 is a 3D perovskite‐like structure constructed out of CO3@Dy26 building units and Cu+ centers by means of nicotinic acid ligand bridging. In 2 , however, nanosized CO3@Tb26 units and [Ag3Cl]2+ centers are connected by Nic? bridges to give rise to a 2D structure. It is worth mentioning that this kind of 4d–4f cluster‐based MOF is quite rare as most of the reported analogous compounds are 3d–4f ones. Additionally, the solid‐state emission spectra of pure compound 2 at room temperature suggest an efficient energy transfer from the ligand Nic? to Tb3+ ions, which we called the “antenna effect”. Compound 2 shows a good two‐photon absorption (TPA) with a TPA coefficient of 0.06947 cm GM?1 (1 GM=10?50 cm4 s photon?1), which indicates that compound 2 might be a good choice for third‐order nonlinear optical materials.  相似文献   

18.
Circularly polarized luminescence (CPL) is attractive in understanding the excited‐state chirality and developing advanced materials. Herein, we propose a chiral reticular self‐assembly strategy to unite achiral AIEgens, chirality donors, and metal ions to fabricate optically pure AIEgen metal–organic frameworks (MOFs) as efficient CPL materials. We have found that CPL activity of the single‐crystal AIEgen MOF was generated by the framework‐enabled strong emission from AIEgens and through‐space chirality transfer from chirality donors to achiral AIEgens via metal‐ion bridges. For the first time, a dual mechano‐switched blue and red‐shifted CPL activity was achieved via ultrasonication and grinding, which enabled the rotation or stacking change of AIEgen rotors with the intact homochiral framework. This work provided not only an insightful view of the aggregation induced emission (AIE) mechanism, but also an efficient and versatile strategy for the preparation of stimuli‐responsive CPL materials.  相似文献   

19.
Cooperative cluster metalation and ligand migration were performed on a Zr‐MOF, leading to the isolation of unique bimetallic MOFs based on decanuclear Zr6M4 (M=Ni, Co) clusters. The M2+ reacts with the μ3‐OH and terminal H2O ligands on an 8‐connected [Zr6O4(OH)8(H2O)4] cluster to form a bimetallic [Zr6M4O8(OH)8(H2O)8] cluster. Along with the metalation of Zr6 cluster, ligand migration is observed in which a Zr–carboxylate bond dissociates to form a M–carboxylate bond. Single‐crystal to single‐crystal transformation is realized so that snapshots for cooperative cluster metalation and ligand migration processes are captured by successive single‐crystal X‐ray structures. In3+ was metalated into the same Zr‐MOF which showed excellent catalytic activity in the acetaldehyde cyclotrimerization reaction. This work not only provides a powerful tool to functionalize Zr‐MOFs with other metals, but also structurally elucidates the formation mechanism of the resulting heterometallic MOFs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号