首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the title complex, {[Cd2(C8H3NO6)2(C4H10N2)(H2O)4]·2H2O}n, the CdII atoms show distorted octahedral coordination. The two carboxylate groups of the dianionic 2‐nitroterephthalate ligand adopt monodentate and 1,2‐bridging modes. The piperazine molecule is in a chair conformation and lies on a crystallographic inversion centre. The CdII atoms are connected via three O atoms from two carboxylate groups and two N atoms from piperazine molecules to form a two‐dimensional macro‐ring layer structure. These layers are further aggregated to form a three‐dimensional structure via rich intra‐ and interlayer hydrogen‐bonding networks. This study illustrates that, by using the labile CdII salt and a combination of 2‐nitroterephthalate and piperazine as ligands, it is possible to generate interesting metal–organic frameworks with rich intra‐ and interlayer O—H...O hydrogen‐bonding networks.  相似文献   

2.
The title compound, [Pb(C4H3N2S)2]n, was prepared by the reaction of [Pb(OAc)2]·3H2O (OAc is acetate) with pyrimidine‐2‐thione in the presence of triethylamine in methanol. In the crystal structure, the PbII atom has an N4S4 coordination environment with four ligands coordinated by N‐ and S‐donor atoms. This compound shows that the pyrimidine‐2‐thiolate anion can lead to a three‐dimensional network when the coordination number of the metal ion can be higher than 6, as is the case with the PbII ion. This compound presents only covalent bonds, showing that despite the possibility of the hemidirected geometries of PbII, the eight‐coordinated ion does not allow the formation of an isolated molecular structure with pyrimidine‐2‐thiolate as the ligand.  相似文献   

3.
In the title compound, [Pb(C6H4NO2)(N3)(H2O)]n, the Pb ion is seven‐coordinated by three N atoms from three azide ligands, two O atoms from two isonicotinate (inic) ligands and two O atoms from two coordinated water molecules, forming a distorted monocapped triangular prismatic coordination geometry. Each azide ligand bridges three PbII ions in a μ1,1,3 coordination mode to form a two‐dimensional three‐connected 63 topology network extending in the bc plane. The carboxylate group of the inic unit and the aqua ligand act as coligands to bridge PbII ions. Adjacent two‐dimensional layers are connected by hydrogen‐bonding interactions between the isonicotinate N atom and the water molecule, resulting in an extended three‐dimensional network. The title complex is the first reported coordination polymer involving a p‐block metal, an azide and a carboxylate.  相似文献   

4.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

5.
The asymmetric unit of the title compound, {[Cu(C4O4)(C6H6N2O)2(H2O)2]·2H2O}n, consists of one pyridine‐4‐carbox­amide (isonicotinamide or ina) ligand, one‐half of a squarate dianion, a coordinated aqua ligand and a solvent water mol­ecule. Both the CuII and the squarate ions are located on inversion centers. The CuII ions are octa­hedrally surrounded by four O atoms of two water mol­ecules and two squarate anions, and by two N atoms of the isonicotinamide ligands. The crystal structure contains chains of squarate‐1,3‐bridged CuII ions. These chains are held together by N—H⋯O and O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming an extensive three‐dimensional network.  相似文献   

6.
In the title complex, {[Cu(C8H8NO3S)2(H2O)]·2H2O}n, the CuII cation has a distorted square‐pyramidal coordination environment consisting of five O atoms, one from a water molecule, one from an N—O group and the other three from the carboxylate groups of two 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions. The aqua[3‐(2‐pyridylsulfanyl)propionato N‐oxide]copper(II) moieties are bridged by 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions to form an infinite three‐dimensional coordination polymer with a zigzag chain structure. The crystal structure is stabilized by hydrogen bonds.  相似文献   

7.
The title compound, [Co(C10H8N2)3]2[V4O12]·11H2O, is composed of two symmetry‐related cations containing octahedrally coordinated CoII ions, a centrosymmetric [V4O12]4− anion with an eight‐membered ring structure made up of four VO4 tetrahedra, and 11 solvent water molecules. The CoII cations and vanadate anions are isolated and build cation and anion layers, respectively. In addition, the title compound exhibits a three‐dimensional network through intra‐ and intermolecular hydrogen‐bond interactions between water molecules and O atoms of the anions, and the crystal structure is stabilized mainly by hydrogen bonds.  相似文献   

8.
The novel title coordination polymer, {[Cu(C8H4O4)(C10H9N3)]·H2O}n, synthesized by the slow‐diffusion method, takes the form of one‐dimensional zigzag chains built up of CuII cations linked by benzene‐1,3‐dicarboxylate (ipht) anions. An exceptional characteristic of this structure is that it belongs to a small group of metal–organic polymers where ipht is coordinated as a bridging tridentate ligand with monodentate and chelate coordination of individual carboxylate groups. The CuII cation has a highly distorted square‐pyramidal geometry formed by three O atoms from two ipht anions and two N atoms from a di‐2‐pyridylamine (dipya) ligand. The zigzag chains, which run along the b axis, further construct a three‐dimensional metal–organic framework via strong face‐to‐face π–π interactions and hydrogen bonds. A solvent water molecule is linked to the different carboxylate groups via hydrogen bonds. Thermogravimetric and differential scanning calorimetric analyses confirm the strong hydrogen bonding.  相似文献   

9.
In the title compound, [Cu(C10H4O8)(C12H8N2)]n, the CuII cation has a four‐coordination environment completed by two N atoms from one 1,10‐phenanthroline (phen) ligand and two O atoms belonging to two di­hydrogen benzene‐1,2,4,5‐­tetra­carboxyl­ate anions (H2TCB2−). There is a twofold axis passing through the CuII cation and the centre of the phen ligand. The [Cu(phen)]2+ moieties are bridged by H2TCB2− anions to form an infinite one‐dimensional coordination polymer with a zigzag chain structure along the c axis. A double‐chain structure is formed by hydrogen bonds between adjacent zigzag chains. Furthermore, there are π–π stacking inter­actions between the phen ligands, with an average distance of 3.64 Å, resulting in a two‐dimensional network structure.  相似文献   

10.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

11.
The title novel heterometallic 3d–4f coordination polymer, {[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2O}n, has a three‐dimensional metal–organic framework composed of two types of metal atoms (one CuII and two ErIII) and two types of bridging anionic ligands [3,5‐dicarboxylatopyrazolate(3−) (ptc3−) and oxalate]. The CuII atom is four‐coordinated in a square geometry. The ErIII atoms are both eight‐coordinated, but the geometries at the two atoms appear different, viz. triangular dodecahedral and bicapped trigonal prismatic. One of the oxalate anions is located on a twofold axis and the other lies about an inversion centre. Both oxalate anions act as bis‐bidentate ligands bridging the latter type of Er atoms in parallel zigzag chains. The pdc3− anions act as quinquedentate ligands not only chelating the CuII and the triangular dodecahedral ErIII centres in a bis‐bidentate bridging mode, but also connecting to ErIII centres of both types in a monodentate bridging mode. Thus, a three‐dimensional metal–organic framework is generated, and hydrogen bonds link the metal–organic framework with the uncoordinated water molecules. This study describes the first example of a three‐dimensional 3d–4f coordination polymer based on pyrazole‐3,5‐dicarboxylate and oxalate, and therefore demonstrates further the usefulness of pyrazoledicarboxylate as a versatile multidentate ligand for constructing heterometallic 3d–4f coordination polymers with interesting architectures.  相似文献   

12.
Cyanide as a bridge can be used to construct homo‐ and heterometallic complexes with intriguing structures and interesting magnetic properties. These ligands can generate diverse structures, including clusters, one‐dimensional chains, two‐dimensional layers and three‐dimensional frameworks. The title cyanide‐bridged CuII–CoIII heterometallic compound, [CuIICoIII(CN)6(C4H11N2)(H2O)]n, has been synthesized and characterized by single‐crystal X‐ray diffraction analysis, magnetic measurement, thermal study, vibrational spectroscopy (FT–IR) and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM–EDS). The crystal structure analysis revealed that it has a two‐dimensional grid‐like structure built up of [Cu(Hpip)(H2O)]3+ cations (Hpip is piperazinium) and [Co(CN)6]3− anions that are linked through bridging cyanide ligands. The overall three‐dimensional supramolecular network is expanded by a combination of interlayer O—H...N and N—H...O hydrogen bonds involving the coordinated water molecules and the N atoms of the nonbridging cyanide groups and monodentate cationic piperazinium ligands. A magnetic investigation shows that antiferromagnetic interactions exist in the title compound.  相似文献   

13.
In the title compound, [Cu(C6F5COO)2(C4H4N2)]n, (I), the asymmetric unit contains one CuII cation, two anionic pentafluorobenzoate ligands and one pyrazine ligand. Each CuII centre is five‐coordinated by three O atoms from three independent pentafluorobenzoate anions, as well as by two N atoms from two pyrazine ligands, giving rise to an approximately square‐pyramidal coordination geometry. Adjacent CuII cations are bridged by a pyrazine ligand and two pentafluorobenzoate anions to give a two‐dimensional layer. The layers are stacked to generate a three‐dimensional supramolecular architecture via strong intermolecular C—H...F—C interactions, as indicated by the F...H distance of 2.38 Å.  相似文献   

14.
In the centrosymmetric dinuclear anions of the title bimetallic complex, {[Mg(H2O)6][Cu2(C8H2NO7)2]·2H2O}n, each CuII ion is strongly coordinated by four O atoms in a distorted square‐planar geometry. Two of these O atoms belong to phenolate groups and the other two to carboxylate groups from 5‐nitro‐2‐oxidoisophthalate (L1) trianions, derived from 5‐nitrobenzene‐1,2,3‐tricarboxylic acid (O2N–H3L). The phenolate O atoms bridge the two CuII ions in the anion. In addition, each CuII cation interacts weakly with a symmetry‐related carboxylate O atom of an adjacent L1 ligand, giving a square‐pyramidal coordination geometry. The copper residue forms a ladder‐like linear coordination polymer via L1 ligands. The [Mg(H2O)6]2+ cations sit on centres of inversion. The polymeric anions, cations and free water molecules are self‐assembled into a three‐dimensional supramolecular network via O—H...O hydrogen bonds.  相似文献   

15.
The title complex, [Cu(C6H4N3)]n, was synthesized by the reaction of cupric nitrate, 1H‐benzotriazole (BTAH) and aqueous ammonia under hydrothermal conditions. The asymmetric unit contains three crystallographically independent CuI cations and two 1H‐benzotriazolate ligands. Two of the CuI cations, one with a linear two‐coordinated geometry and one with a four‐coordinated tetrahedral geometry, are located on sites with crystallographically imposed twofold symmetry. The third CuI cation, with a planar three‐coordinated geometry, is on a general position. Two CuI cations are doubly bridged by two BTA ligands to afford a noncentrosymmetric planar [Cu2(BTA)2] subunit, and two [Cu2(BTA)2] subunits are arranged in an antiparallel manner to form a centrosymmetric [Cu2(BTA)2]2 secondary building unit (SBU). The SBUs are connected in a crosswise manner via the sharing of four‐coordinated CuI cations, Cu—N bonding and bridging by two‐coordinate CuI cations, resulting in a one‐dimensional chain along the c axis. These one‐dimensional chains are further linked by C—H...π and weak van der Waals interactions to form a three‐dimensional supramolecular architecture.  相似文献   

16.
In the title compound, {[Co(C7H7N2O2)2]·H2O}n, the CoII atom lies on an inversion centre and has octahedral geometry, defined by two O atoms in axial positions and four N atoms in equatorial sites from six different 3,5‐diamino­benzoate ligands. Each 3,5‐diamino­benzoate anion acts as a μ3‐bridging ligand, linking three adjacent CoII ions through one O atom and two N atoms to form a three‐dimensional coordination polymer.  相似文献   

17.
In the polymeric title compound, [Cu(im)Cl(phen)]n, where im is the imidazolate anion (C3H3N2) and phen is 1,10‐phenanthroline (C12H8N2), each CuII ion is five‐coordinated by four basal N atoms (two from two different im anions and two from one phen ligand) and one axial Cl atom, in a distorted square‐pyramidal coordination geometry. Moreover, each im anion bridges two identical {CuCl(phen)}+ cations through its two N atoms, resulting in a one‐dimensional zigzag chain along the crystallographic a axis. In addition, pairs of adjacent chains are staggered by π–π interactions, generating a two‐dimensional layer, and neighbouring layers are further linked by two different kinds of C—H⋯Cl interactions, producing a three‐dimensional network.  相似文献   

18.
The title compound, [Cu2(C6H19N4)2Cl2](C10H6O6S2)2·5H2O, is comprised of discrete [Cu2(tren)2Cl2]2+ dimers {tren is 2‐[N,N‐bis(2‐amino­ethyl)­amino]­ethyl­aminium} and naphthalene‐1,5‐di­sulfonate anions. Two Cl? anions bridge two CuII ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligand, giving each metal atom a distorted square‐pyramidal coordination geometry. The cation lies about an inversion centre and the asymmetric unit also has two independent anions lying about inversion centres.  相似文献   

19.
In the title compound, {[NiCl2(C19H17N5O2)2]·4C3H7NO}n, the NiII atom is located on an inversion centre and is in a six‐coordinated octahedral geometry, formed by four pyridine N atoms from four N2,N6‐bis[(pyridin‐3‐yl)methyl]pyridine‐2,6‐dicarboxamide (BPDA) ligands occupying the equatorial plane and two chloride anions at the axial sites. The bidentate bridging BPDA ligands link the NiII atoms into a two‐dimensional corrugated grid‐like flexible layer with a (4,4)‐connected topology, which consists of left‐ and right‐handed helical chains sharing the common NiII atoms. Investigation of the thermal stability shows that the network is stable up to 573 K.  相似文献   

20.
A novel three‐dimensional coordination polymer, {[Pb(C14H8N2O4)(H2O)]·0.5C12H10N2}n, has been synthesized by hydrothermal reaction of Pb(OAc)2·3H2O (OAc is acetate), 2,2′‐(diazene‐1,2‐diyl)dibenzoic acid (H2L) and 1,2‐bis(pyridin‐4‐yl)ethylene (bpe). The asymmetric unit contains a crystallographically independent PbII cation, one L2− ligand, an aqua ligand and half a bpe molecule. Each PbII centre is seven‐coordinated by six O atoms of bridging–chelating carboxylate groups from L2− ligands and by one O atom from a coordinated water molecule. The PbII cations are bridged by L2− ligands, forming [PbO2]n chains along the a axis. These chains are further connected by L2− ligands along the b and c axes to give a three‐dimensional framework with a 41263 topology. The channel voids are occupied by bpe molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号