共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammasai Karthikeyan Matthias Zeller Packianathan Thomas Muthiah 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(4):337-340
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions. 相似文献
2.
Isaac Odiase Catherine E. Nicholson Ruksanna Ahmad Jerry Cooper Dmitry S. Yufit Sharon J. Cooper 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(4):276-283
Four new cocrystals of pyrimidin‐2‐amine and propane‐1,3‐dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin‐2‐amine–glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin‐2‐amine–glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal–salt bis(2‐aminopyrimidinium) glutarate–glutaric acid (1/2), 2C4H6N3+·C6H6O42−·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal–salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)–(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen‐bond patterns show certain similarities in all four structures. 相似文献
3.
R. Jagan D. Sathya K. Sivakumar 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(5):374-380
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4−, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4−·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4−) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4− anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4− anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems. 相似文献
4.
Rafika Bouchene Sofiane Bouacida Fadila Berrah Thierry Roisnel 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(7):672-676
In the title cadmium chloride salt, (C3H5N4O2)4[CdCl6]·4H2O, the asymmetric unit comprises two N‐protonated 5‐amino‐3‐carboxy‐4H‐1,2,4‐triazol‐1‐ium cations, half a [CdCl6]4− anion and two molecules of water. The Cd2+ cation is located on a centre of inversion and is coordinated by six chloride anions, forming a distorted octahedron. In the crystal structure, alternating layers of cations and anions are arranged along the [101] direction, forming a three‐dimensional supramolecular network via a combination of hydrogen‐bonding and aromatic stacking interactions. 相似文献
5.
D. Sathya R. Jagan R. Padmavathy R. Mohan Kumar K. Sivakumar 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(8):904-909
In bis(2‐aminoanilinum) fumarate, 2C6H9N2+·C4H2O42−, (I), the asymmetric unit consists of two aminoanilinium cations and one fumarate dianion, whereas in 3‐methylanilinium hydrogen fumarate, C7H10N+·C4H3O4−, (II), and 4‐chloroanilinium hydrogen fumarate, C6H7ClN+·C4H3O4−, (III), the asymmetric unit contains two symmetry‐independent hydrogen fumate anions and anilinium cations with a slight difference in their geometric parameters; the two salts are isostructural. In (II) and (III), the carboxylic acid H atoms of the anions are disordered across both ends of the anion, with equal site occupancies of 0.50. Both the 4‐chloroanilinium cations of (III) are disordered over two orientations with major occupancies fixed at 0.60 in each case. The hydrogen fumarate anions of (II) and (III) form one‐dimensional anionic chains linked through O—H...O hydrogen bonds. Salts (II) and (III) form two‐dimensional supramolecular sheets built from R44(16), R44(18), R55(25) and C22(14) motifs extending parallel to the (010) plane, whereas in (I), an (010) sheet is formed built from two R43(13) motifs, two R22(9) motifs and an R44(18) motif. 相似文献
6.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(7):816-829
To explore the operational role of noncovalent interactions in supramolecular architectures with designed topologies, a series of solid‐state structures of 2‐ and 4‐formylphenyl 4‐substituted benzenesulfonates was investigated. The compounds are 2‐formylphenyl 4‐methylbenzenesulfonate, C14H12O4S, 3a , 2‐formylphenyl 4‐chlorobenzenesulfonate, C13H9ClO4S, 3b , 2‐formylphenyl 4‐bromobenzenesulfonate, C13H9BrO4S, 3c , 4‐formylphenyl 4‐methylbenzenesulfonate, C14H12O4S, 4a , 4‐formylphenyl 4‐chlorobenzenesulfonate, 4b , C13H9ClO4S, and 4‐formylphenyl 4‐bromobenzenesulfonate, C13H9BrO4S, 4c . The title compounds were synthesized under basic conditions from salicylaldehyde/4‐hydroxybenzaldehydes and various aryl sulfonyl chlorides. Remarkably, halogen‐bonding interactions are found to be important to rationalize the solid‐state crystal structures. In particular, the formation of O…X (X = Cl and Br) and type I X…X halogen‐bonding interactions have been analyzed by means of density functional theory (DFT) calculations and characterized using Bader's theory of `atoms in molecules' and molecular electrostatic potential (MEP) surfaces, confirming the relevance and stabilizing nature of these interactions. They have been compared to antiparallel π‐stacking interactions that are formed between the arylsulfonates. 相似文献
7.
Ligia Rebelo Gomes John Nicolson Low Ana S. M. C. Rodrigues James L. Wardell Marcus V. N. de Souza Thais C. M. Noguiera Alessandra C. Pinheiro 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(8):920-926
(E)‐2‐(2‐Benzylidenehydrazinylidene)quinoxaline, C15H12N4, crystallized with two molecules in the asymmetric unit. The structures of six halogen derivatives of this compound were also investigated: (E)‐2‐[2‐(2‐chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)‐2‐[2‐(3‐chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)‐2‐[2‐(4‐chlorobenzylidene)hydrazinylidene]quinoxaline, C15H11ClN4; (E)‐2‐[2‐(2‐bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4; (E)‐2‐[2‐(3‐bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4; (E)‐2‐[2‐(4‐bromobenzylidene)hydrazinylidene]quinoxaline, C15H11BrN4. The 3‐Cl and 3‐Br compounds are isomorphous, as are the 4‐Cl and 4‐Br compounds. In all of these compounds, it was found that the supramolecular structures are governed by similar predominant patterns, viz. strong intermolecular N—H...N(pyrazine) hydrogen bonds supplemented by weak C—H...N(pyrazine) hydrogen‐bond interactions in the 2‐ and 3‐halo compounds and by C—H...Cl/Br interactions in the 4‐halo compounds. In all compounds, there are π–π stacking interactions. 相似文献
8.
Yelder A. Castillo Luis F. Zapata Jorge Trilleras Justo Cobo Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(1):50-54
The title compound, C23H17N3O4S, crystallizes with Z′ = 3 in the space group P. Two of the three independent molecules are broadly similar in terms of both their molecular conformations and their participation in hydrogen bonds, but the third molecule differs from the other two in both of these respects. The molecules are linked by a combination of N—H...O, N—H...N, C—H...O, C—H...N and C—H...π(arene) hydrogen bonds to form a continuous three‐dimensional framework structure within which a centrosymmetric six‐molecule aggregate can be identified as a key structural element. 相似文献
9.
Channappa N. Kavitha Hemmige S. Yathirajan Manpreet Kaur Eric C. Hosten Richard Betz Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(8):805-811
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2−, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S−·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures. 相似文献
10.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(1):21-30
Doubly and triply hydrogen‐bonded supramolecular synthons are of particular interest for the rational design of crystal and cocrystal structures in crystal engineering since they show a high robustness due to their high stability and good reliability. The compound 5‐methyl‐2‐thiouracil (2‐thiothymine) contains an ADA hydrogen‐bonding site (A = acceptor and D = donor) if the S atom is considered as an acceptor. We report herein the results of cocrystallization experiments with the coformers 2,4‐diaminopyrimidine, 2,4‐diamino‐6‐phenyl‐1,3,5‐triazine, 6‐amino‐3H‐isocytosine and melamine, which contain complementary DAD hydrogen‐bonding sites and, therefore, should be capable of forming a mixed ADA–DAD N—H…S/N—H…N/N—H…O synthon (denoted synthon 3sN·S;N·N;N·O), consisting of three different hydrogen bonds with 5‐methyl‐2‐thiouracil. The experiments yielded one cocrystal and five solvated cocrystals, namely 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/2), C5H6N2OS·2C4H6N4, (I), 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C4H6N4·C3H7NO, (II), 5‐methyl‐2‐thiouracil–2,4‐diamino‐6‐phenyl‐1,3,5‐triazine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C9H9N5·C3H7NO, (III), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (2/2/1), (IV), 2C5H6N2OS·2C4H6N4O·C3H7NO, (IV), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylacetamide (2/2/1), 2C5H6N2OS·2C4H6N4O·C4H9NO, (V), and 5‐methyl‐2‐thiouracil–melamine (3/2), 3C5H6N2OS·2C3H6N6, (VI). Synthon 3sN·S;N·N;N·O was formed in three structures in which two‐dimensional hydrogen‐bonded networks are observed, while doubly hydrogen‐bonded interactions were formed instead in the remaining three cocrystals whereby three‐dimensional networks are preferred. As desired, the S atoms are involved in hydrogen‐bonding interactions in all six structures, thus illustrating the ability of sulfur to act as a hydrogen‐bond acceptor and, therefore, its value for application in crystal engineering. 相似文献
11.
Inese Sarcevica Liana Orola Mikelis V. Veidis Sergey Belyakov 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(4):392-395
A new polymorph of the cinnamic acid–isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid–pyridine‐4‐carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen‐bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid–N′‐(propan‐2‐ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid–pyridine O—H...N and hydrazide–hydrazide N—H...O hydrogen bonds are formed. 相似文献
12.
Vanessa Kristina Seiler Wilhelm Maximilian Hützler Michael Bolte 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(5):379-388
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured. 相似文献
13.
Kraig A. Wheeler Travis R. Helgren Thomas W. Clayton 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):306-311
The title bimolecular structure, [Cu4Cl6O(C4H8O)3(H2O)]2[Cu4Cl6O(C4H8O)4]·4C4H8O, at 100 K has monoclinic (P21/c) symmetry. The structure contains nine symmetry‐independent molecules expressed in simplest molecular form as 6[Cu4Cl6O(C4H8O)3(H2O)·2(C4H8O)]:3Cu4Cl6O(C4H8O)4. The compound exhibits a supercell (smaller than the unit cell based on weak reflections) structure due to pseudotranslational symmetry. The structure displays O—H...O hydrogen bonding between bound water ligands and tetrahydrofuran (THF) solvent molecules. The structure exhibits disorder for 12 of the THF molecules, of which seven are ligated to Cu and five are hydrogen bonded to H2O ligands. 相似文献
14.
Balasubramanian Sridhar Jagadeesh Babu Nanubolu Krishnan Ravikumar 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(10):1164-1169
Lamotrigine, an antiepileptic drug, has been complexed with three aromatic carboxylic acids. All three compounds crystallize with the inclusion of N,N‐dimethylformamide (DMF) solvent, viz. lamotriginium [3,5‐diamino‐6‐(2,3‐dichlorophenyl)‐1,2,4‐triazin‐2‐ium] 4‐iodobenzoate N,N‐dimethylformamide monosolvate, C9H8Cl2N5+·C7H4IO2−·C3H7NO, (I), lamotriginium 4‐methylbenzoate N,N‐dimethylformamide monosolvate, C9H7Cl2N5+·C8H8O2−·C3H7NO, (II), and lamotriginium 3,5‐dinitro‐2‐hydroxybenzoate N,N‐dimethylformamide monosolvate, C9H8Cl2N5+·C7H3N2O7−·C3H7NO, (III). In all three structures, proton transfer takes place from the acid to the lamotrigine molecule. However, in (I) and (II), the acidic H atom is disordered over two sites and there is only partial transfer of the H atom from O to N. In (III), the corresponding H atom is ordered and complete proton transfer has occurred. Lamotrigine–lamotrigine, lamotrigine–acid and lamotrigine–solvent interactions are observed in all three structures and they thereby exhibit isostructurality. The DMF solvent extends the lamotrigine–lamotrigine dimers into a pseudo‐quadruple hydrogen‐bonding motif. 相似文献
15.
Telisha Traut‐Johnstone Frederik H. Kriel Raymond Hewer D. Bradley G. Williams 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(12):1121-1124
The mixed organic–inorganic title salt, C7H18N2O2+·C2HO4−·Cl−, forms an assembly of ionic components which are stabilized through a series of hydrogen bonds and charge‐assisted intermolecular interactions. The title assembly crystallizes in the monoclinic C2/c space group with Z = 8. The asymmetric unit consists of a 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dication, a hydrogen oxalate counter‐anion and an inorganic chloride counter‐anion. The organic cations and anions are connected through a network of N—H...O, O—H...O and C—H...O hydrogen bonds, forming several intermolecular rings that can be described by the graph‐set notations R33(13), R21(5), R12(5), R21(6), R23(6), R22(8) and R33(9). The 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dications are interconnected through N—H...O hydrogen bonds, forming C(9) chains that run diagonally along the ab face. Furthermore, the hydrogen oxalate anions are interconnected via O—H...O hydrogen bonds, forming head‐to‐tail C(5) chains along the crystallographic b axis. The two types of chains are linked through additional N—H...O and O—H...O hydrogen bonds, and the hydrogen oxalate chains are sandwiched by the 4‐(3‐azaniumylpropyl)morpholin‐4‐ium chains, forming organic layers that are separated by the chloride anions. Finally, the layered three‐dimensional structure is stabilized via intermolecular N—H...Cl and C—H...Cl interactions. 相似文献
16.
A. V. Afonin D-S. D. Toryashinova E. Yu. Schmidt 《Journal of Molecular Structure》2004,680(1-3):127-135
The C–HX (X=N, O, S) intramolecular hydrogen bond between the α-hydrogen of the vinyl group and the corresponding heteroatom in the series of 1-vinyl-2-(2′-heteroaryl)pyrroles was examined by ab initio calculations at the B3LYP/6-311(d,p) level. It was shown that the C–HN hydrogen bond is stronger than the C–HO hydrogen bond and the latter is, in turn, stronger than the C–HS hydrogen bond. This conclusion is supported by calculations of 1H NMR chemical shieldings. 相似文献
17.
Shridhar H. Thorat Sanjay Kumar Sahu Rajesh G. Gonnade 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(11):1010-1016
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure. 相似文献
18.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(9):674-681
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres. 相似文献
19.
Jos J. Campos‐Gaxiola Susana P. Arredondo Rea Ramn Corral Higuera Herbert Hpfl Adriana Cruz Enríquez 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(1):48-52
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM− (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA). 相似文献
20.
Daniel E. Lynch Graham Smith Tony D. Keene Peter N. Horton 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(10):738-742
The study of ternary systems is interesting because it introduces the concept of molecular preference/competition into the system where one molecule may be displaced because the association between the other two is significantly stronger. Current definitions of a tertiary system indicate that solvent molecules are excluded from the molecule count of the system and some of the latest definitions state that any molecule that is not a solid in the parent form at room temperature should also be excluded from the molecule count. In the structure of the quinoline adduct hydrate of tryptaminium 3,5‐dinitrobenzoate, 3C10H13N2+·3C7H3N2O6−·2C9H7N·2H2O, the asymmetric unit comprises multiple cation and anion species which are conformationally similar among each type set. In the crystal, a one‐dimensional hydrogen‐bonded supramolecular structure is generated through extensive intra‐ and inter‐unit aminium N—H…O and N—H…N, and water O—H…O hydrogen bonds. Within the central‐core hydrogen‐bonding associations, conjoined cyclic R44(10), R53(10) and R44(12) motifs are generated. The unit is expanded into a one‐dimensional column‐like polymer extending along [010]. Present also in the crystal packing of the structure are a total of 19 π–π interactions involving both cation, anion and quinoline species [ring‐centroid separation range = 3.395 (3)–3.797 (3) Å], as well as a number of weak C—H…O hydrogen‐bonding associations. The presence of the two water molecules in the crystal structure is considered to be the principal causative factor in the low symmetry of the asymmetric unit. 相似文献