首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H‐imidazo[4,5‐f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti‐trigonal prismatic geometry. The symmetry‐independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one‐dimensional ladder‐like chains which are connected through the IP ligands to form two‐dimensional layers. These two‐dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three‐dimensional supramolecular network.  相似文献   

2.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

3.
In the title mixed‐ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdII atom, one doubly deprotonated 4,4′‐sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdII centre is six‐coordinated by two O atoms from a chelating carboxylate group of a SDBA2− ligand, two O atoms from monodentate carboxylate groups of two different SDBA2− ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2− ligand, with one in a μ1‐η11 chelating mode and the other in a μ2‐η11 bis‐monodentate mode. Single‐crystal X‐ray diffraction analysis revealed that the title compound is a one‐dimensional double‐chain polymer containing 28‐membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair‐shaped water hexamer cluster is observed in the compound.  相似文献   

4.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

5.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

6.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

7.
Photocatalysis is a green technology for the treatment of all kinds of contaminants and has advantages over other treatment methods. Recently, much effort has been devoted to developing new photocatalytic materials based on metal–organic frameworks for use in the degradation of many kinds of organic contaminants. With the aim of searching for more effective photocatalysts, the title three‐dimensional coordination polymer, [Cd2(C8H4O4)2(C18H16N2O2)]n, was prepared. The asymmetric unit contains one CdII cation, one benzene‐1,2‐dicarboxylate anion (denoted L2−) and half of a centrosymmetric 1,4‐bis(pyridin‐3‐ylmethoxy)benzene ligand (denoted bpmb). Each CdII centre is five‐coordinated by four carboxylate O atoms from two L2− ligands and by one N atom from a bpmb ligand, forming a disordered pentagonal pyramidal coordination geometry. The CdII centres are interlinked by L2− ligands to form a one‐dimensional [Cd2L2]n chain. Adjacent chains are further connected by bpmb linkers, giving rise to a two‐dimensional network, and these networks are pillared by bpmb to afford a three‐dimensional framework with a 33.42.63.71.81 topology. Each grid in the framework has large channels which are filled mainly by the two other equivalent frameworks to form a threefold interpenetrating net. The compound exhibits relatively good photocatalytic activity towards the degradation of methylene blue in aqueous solution under UV irradiation.  相似文献   

8.
The title CdII coordination framework, [Cd(C15H8O5)(H2O)]n or [Cd(bpdc)(H2O)]n [H2bpdc is 2‐(4‐carboxybenzoyl)benzoic acid], has been prepared and characterized using IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Each CdII centre is six‐coordinated by two O atoms from one 2‐(4‐carboxylatobenzoyl)benzoate (bpdc2−) ligand in chelating mode, three O‐donor atoms from three other bpdc2− anions and one O atom from a coordinated water molecule in an octahedral coordination environment. Two crystallographically equivalent CdII cations are bridged by one O atom of the 2‐carboxylate group of one bpdc2− ligand and by both O atoms of the 4‐carboxylate group of a second bpdc2− ligand to form a binuclear [(Cd)2(O)(OCO)] secondary building unit. Adjacent secondary building units are interlinked to form a one‐dimensional [Cd(OCO)2]n chain. The bpdc2− ligands link these rod‐shaped chains to give rise to a complex two‐dimensional [Cd(bpdc)]n framework with a 4,4‐connected binodal net topology of point symbol {43.62.8}. The compound exhibits a strong fluorescence emission and typical ferroelectric behaviour in the solid state at room temperature.  相似文献   

9.
The title compound, [Cd3(C8H10O4)3(C12H9N3)2(H2O)2]n or [Cd3(chdc)3(4‐PyBIm)2(H2O)2]n, was synthesized hydrothermally from the reaction of Cd(CH3COO)2·2H2O with 2‐(pyridin‐4‐yl)‐1H‐benzimidazole (4‐PyBIm) and cyclohexane‐1,4‐dicarboxylic acid (1,4‐chdcH2). The asymmetric unit consists of one and a half CdII cations, one 4‐PyBIm ligand, one and a half 1,4‐chdc2− ligands and one coordinated water molecule. The central CdII cation, located on an inversion centre, is coordinated by six carboxylate O atoms from six 1,4‐chdc2− ligands to complete an elongated octahedral coordination geometry. The two terminal rotationally symmetric CdII cations each exhibits a distorted pentagonal–bipyramidal geometry, coordinated by one N atom from 4‐PyBIm, five O atoms from three 1,4‐chdc2− ligands and one O atom from an aqua ligand. The 1,4‐chdc2− ligands possess two conformations, i.e.e,etrans‐chdc2− and e,acis‐chdc2−. The cis‐1,4‐chdc2− ligands bridge the CdII cations to form a trinuclear {Cd3}‐based chain along the b axis, while the trans‐1,4‐chdc2− ligands further link adjacent one‐dimensional chains to construct an interesting two‐dimensional network.  相似文献   

10.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

11.
In the title mixed‐ligand metal–organic polymeric compound, [Cd(C10H8O4)(C8H12N6)]n or [Cd(PBEA)(BTB)]n [H2PBEA is benzene‐1,4‐diacetic acid and BTB is 1,4‐bis(1,2,4‐triazol‐1‐yl)butane], the asymmetric unit contains one CdII ion, one BTB molecule and one PBEA2− anion. The CdII ion is in a slightly distorted pentagonal–bipyramidal geometry, coordinated by five carboxylate O atoms from three distinct PBEA2− anions and by two BTB N atoms. There are two coordination patterns for the carboxylate groups of the PBEA2− ligand, one being a μ1‐η11 chelating mode and the other a μ2‐η21 bridging mode, while the BTB molecule shows a transtranstrans conformation. The crystal structure is constructed from the secondary building unit (SBU) [Cd2(CO2)4N2O2], in which the two metal centres are held together by two PBEA2− linkers. The SBU is connected by BTB and PBEA2− bridges to form a two‐dimensional grid‐like (4,4) layer with meshes of dimensions 14.69 × 11.28 Å.  相似文献   

12.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

13.
In the mixed‐ligand metal–organic title polymeric compound, [Zn(C10H8O4)(C10H16N6)]n or [Zn(PBEA)(BTH)]n [H2PBEA is benzene‐1,4‐diacetic acid and BTH is 1,6‐bis(1,2,4‐triazol‐1‐yl)hexane], the asymmetric unit contains a ZnII atom, one half of a BTH ligand and one half of a doubly deprotonated H2PBEA ligand. Each ZnII centre lies on a crystallographic twofold rotation axis and is four‐coordinated by two O atoms from two distinct PBEA2− ligands and two N atoms from two different BTH ligands in a {ZnO2N2} coordination environment. The three‐dimensional topology of the title compound corresponds to that of a fivefold interpenetrating diamond‐like metal–organic framework.  相似文献   

14.
The asymmetric unit of the title compound, [Cd(C8H4O4)(C17H8ClN5)(H2O)]n, contains one CdII atom, two half benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, one 11‐chloropyrido[2′,3′:2,3]pyrimidino[5,6‐f][1,10]phenanthroline (L) ligand and one coordination water molecule. The 1,4‐bdc ligands are on inversion centers at the centroids of the arene rings. The CdII atom is six‐coordinated by two N atoms from one L ligand, three carboxylate O atoms from two different 1,4‐bdc ligands and one water O atom in a distorted octahedral coordination sphere. Each CdII center is bridged by the 1,4‐bdc dianions to give a one‐dimensional chain. π–π stacking interactions between L ligands of neighboring chains extend adjacent chains into a two‐dimensional supramolecular (6,3) network. Neighboring (6,3) networks are interpenetrated in an unusual inclined mode, resulting in a three‐dimensional framework. Additionally, the water–carboxylate O—H...O hydrogen bonds observed in the network consolidate the interpenetrating nets.  相似文献   

15.
The title compound, poly[[diaqua‐1κ2O‐tetrakis(μ3‐pyridine‐2,3‐dicarboxylato)‐2:1:2′κ10N,O2:O2′,O3:O3′;2:1:2′κ8O3:O3′:N,O2‐diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P) symmetry, was prepared by the reaction of pyridine‐2,3‐dicarboxylic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine‐2,3‐dicarboxylate (pydc2−) ligand exhibits μ3‐η1111 and μ3‐η11111 coordination modes, bridging two FeIII cations and one SrII cation. The SrII cation, which is located on an inversion centre, is eight‐coordinated by six O atoms of four pydc2− ligands and two water molecules. The coordination geometry of the SrII cation can be best described as distorted dodecahedral. The FeIII cation is six‐coordinated by O and N atoms of four pydc2− ligands in a slightly distorted octahedral geometry. Each FeIII cation bridges two neighbouring FeIII cations to form a one‐dimensional [Fe2(pydc)4]n chain. The chains are connected by SrII cations to form a three‐dimensional framework. The topology type of this framework is tfj . The structure displays O—H...O and C—H...O hydrogen bonding.  相似文献   

16.
The CdII three‐dimensional coordination poly[[[μ4‐1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene]bis(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato)dicadmium(II)] dihydrate], {[Cd2(C9H4O6)2(C8H10N6)]·2H2O}n , (I), has been synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O, benzene‐1,3,5‐tricarboxylic acid (1,3,5‐H3BTC) and 1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene (1,4‐btbe). The IR spectrum suggests the presence of protonated carboxylic acid, deprotonated carboxylate and triazolyl groups. The purity of the bulk sample was confirmed by elemental analysis and X‐ray powder diffraction. Single‐crystal X‐ray diffraction analysis reveals that the CdII ions adopt a five‐coordinated distorted trigonal–bipyramidal geometry, coordinated by three O atoms from three different 1,3,5‐HBTC2− ligands and two N atoms from two different 1,4‐btbe ligands; the latter are situated on centres of inversion. The CdII centres are bridged by 1,3,5‐HBTC2− and 1,4‐btbe ligands into an overall three‐dimensional framework. When the CdII centres and the tetradentate 1,4‐btbe ligands are regarded as nodes, the three‐dimensional topology can be simplified as a binodal 4,6‐connected network. Thermogravimetric analysis confirms the presence of lattice water in (I). Photoluminescence studies imply that the emission of (I) may be ascribed to intraligand fluorescence.  相似文献   

17.
The unsymmetrical N‐heterocyclic ligand 1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole (bmi) has three potential N‐atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self‐assembly of bmi with HgBr2 or HgI2. Single‐crystal X‐ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three‐dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.  相似文献   

18.
In the title compound, [Cd(C8H4O4)(C10H8N2O2)(H2O)]n, (I), each CdII atom is seven‐coordinated in a distorted monocapped trigonal prismatic coordination geometry, surrounded by four carboxylate O atoms from two different benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, two O atoms from two distinct 4,4′‐bipyridine N,N′‐dioxide (bpdo) ligands and one water O atom. The CdII atom and the water O atom are on a twofold rotation axis. The bpdo and 1,4‐bdc ligands are on centers of inversion. Each crystallographically unique CdII center is bridged by the 1,4‐bdc dianions and bpdo ligands to give a three‐dimensional diamond framework containing large adamantanoid cages. Three identical such nets are interlocked with each other, thus directly leading to the formation of a threefold interpenetrated three‐dimensional diamond architecture. To the best of our knowledge, (I) is the first example of a threefold interpenetrating diamond net based on both bpdo and carboxylate ligands. There are strong linear O—H...O hydrogen bonds between the water molecules and carboxylate O atoms within different diamond nets. Each diamond net is hydrogen bonded to its two neighbors through these hydrogen bonds, which further consolidates the threefold interpenetrating diamond framework.  相似文献   

19.
The title coordination polymer, {[Cd2(CH2N5)(C6H4NO2)Cl(OH)]·0.14H2O}n, (I), was synthesized by the reaction of cadmium acetate and N‐(1H‐tetrazol‐5‐yl)isonicotinamide in aqueous ammonia, using hydrochloric acid to adjust the pH. Under hydrothermal conditions, N‐(1H‐tetrazol‐5‐yl)isonicotinamide slowly hydrolyzes to form isonicotinic acid (Hisonic) and 5‐aminotetrazole (Hatz). The deprotonated form of isonicotinic acid (denoted isonic) acts as a bridging ligand in the structure. The polymer crystallizes in the monoclinic space group C2/m. In the structure, there is one Cd33‐OH) unit of Cs symmetry, with one of the CdII atoms and the O and H atoms located on a mirror plane. The other crystallographically independent CdII cation is located on an inversion centre. Each edge of the Cd33‐OH) isosceles triangle is bridged by an atz ligand in a μ1,2 or μ2,33,4 mode. The Cd33‐OH) units are laced around with a belt of chloride ligands. The belts are further connected into undulating layers via weak inter‐belt Cd—Cl bonds. The two organic ligands reside across mirror planes. The construction of a three‐dimensional framework is completed by the pillaring isonic ligand. Water molecules partially occupy the voids of the framework.  相似文献   

20.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号